Supporting information

Luminescence turn-on sensor for the selective detections of trace water and methanol based on a Zn(II) coordination polymer with 2,5-dihydroxyterephthalate

Jitti Suebphanpho^a and Jaursup Boonmak^{a*}

^aMaterials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

*E-mail: jaursup@kku.ac.th

Fig. S1 PXRD patterns of as-synthesized samples compared with the simulated patterns Zn-CP and Zn-CP-II.

Fig. S2 a) Coordination environment around the Zn(II) center. b) 1D zigzag chain of Zn-CP through linker H_2dhtp^2 -ligand.

Fig. S3 2D layer of **Zn-CP** via π - π interaction along the *c*-axis between aromatic and pyridine rings of H₂dhtp²⁻ and chelating 2,2'-bpy ligands.

Fig. S4 The packing structure of **Zn-CP** presents a 3D supramolecular framework via hydrogen bonding between coordinated water molecules and uncoordinated oxygen atoms from carboxyl groups along the *b*-axis.

Fig. S5 Coordination environment around the Zn(II) center of Zn-CP-II.

Fig. S6 2D layer and intramolecular interaction (π - π stacking between pyridyl rings of 2,2'-bpy and H-bonding between hydroxy groups of H₂dhtp²⁻) of **Zn-CP-II**.

Fig. S7 3D supramolecular framework via C-H··· π interaction (red dashed line) of Zn-CP-II.

Fig. S8 The thermogram of Zn-CP.

Fig. S9 FTIR spectra before and after dehydration and rehydration processes of Zn-CP.

Fig. S10 PXRD patterns of Zn-CP after soaking in common organic solvents for 24 h at room temperature.

Fig. S11 CIE chromaticity diagrams for Zn-CP probe before and after adding different contents of water in dry methanol a) and b) dry ethanol.

Fig. S12 FTIR spectra of Zn-CP before and after water sensing in dry methanol and dry ethanol.

Fig. S13 PXRD patterns of Zn-CP before and after water sensing in dry methanol and dry ethanol.

Fig. S14 Photographic images of the suspension of Zn-CP-II in a) dry methanol and b) dry ethanol with different water levels (0-12%). c) and d) Luminescence emission spectra of Zn-CP-II probe upon adding different contents of water in dry methanol and dry ethanol, respectively. e) and f) Linear relationship between the emission wavelength or luminescence intensity and water contents of Zn-CP-II probe in methanol and ethanol respectively. The inset show fluorescence intensity upon incremental addition of water 0-20%v/v.

Fig. S15 CIE chromaticity diagrams for Zn-CP-II probe before and after adding different contents of water in dry methanol a) and b) dry ethanol.

Fig. S16 FTIR spectra of Zn-CP-II before and after water sensing in dry methanol and dry ethanol.

Fig. S17 PXRD patterns of **Zn-CP-II** before and after water sensing in dry methanol and dry ethanol. The green star and orange diamond symbols represent characteristic diffraction peaks for **Zn-CP** and **Zn-CP-II**, respectively.

Fig. S18 a) Photographic images of the suspension of Zn-CP in dry *n*-propanol with different methanol levels (0-50 %v/v). b) Luminescence emission spectra of Zn-CP probe upon adding different content of methanol in dry *n*-propanol. c) Linear relationship between the luminescence intensity and methanol content of Zn-CP.

Fig. S19 a) Photographic images of the suspension of Zn-CP in dry *n*-butanol with different methanol levels (0-50 %v/v). b) Luminescence emission spectra of Zn-CP probe upon adding different content of methanol in dry *n*-butanol. c) Linear relationship between the luminescence intensity and methanol content of Zn-CP.

Fig. S20 PXRD patterns of Zn-CP before and after methanol sensing in dry ethanol, dry *n*-propanol and dry *n*-butanol, respectively.

Entry	Solvents	Kamlet-Taft parameters				
		α	β	π*		
1	Water	1.17	0.47	1.09		
2	ACT	0.00	0.51	0.70		
3	ACN	0.19	0.37	0.75		
4	DCM	0.13	0.10	0.82		
5	DMF	0.00	0.69	0.88		
6	DMA	0.00	0.76	0.88		
7	EtOAc	0.00	0.45	0.55		
8	THF	0.00	0.58	0.55		
9	MeOH	0.98	0.66	0.60		
10	EtOH	0.86	0.75	0.54		
11	n-PrOH	0.84	0.90	0.52		
12	n-BuOH	0.84	0.84	0.47		
13	n-hexane	0.00	0.00	-0.08		
14	Toluene	0.00	0.11	0.54		

Note: α = Hydrogen bond donor, β = Hydrogen bond acceptor, π^* = polarizability/dipolarity

Compounds	Excitation wavelength (nm)	Emission wavelength (nm)	References
[Zn(L)(Cz-3,6-bpy)] _n	370	522	<i>Cryst. Growth Des.</i> 2022 , 22, 228–236
$ \{ [Cd(4-bpdh)(L)] \}_n \\ \{ [Cd(3-bpdh)(L)0.5-(L)_{0.5}(H_2O)] \cdot 2H_2O \}_n $	350	456 462	<i>Cryst. Growth Des.</i> 2021 , 21, 6110–6118
SNNU-300	367	439	<i>J. Solid State Chem.</i> 2021 , 300, 122212
$\{[Zn_2(H_2L)(L)_{0.5}(azpy)_{0.5}-(H_2O)]\cdot 4H_2O\}$	390	530	<i>Chem. Eur. J.</i> 2012 , 18, 237 – 244
$[{Cd(bpe)_{1.5}(L)}]_n$	360	412	<i>Chem. Eur. J.</i> 2019 , 25, 12196-12205
${[Zn(4-bpdh)(L)] \cdot (MeOH)(H_2O)}_n$	350	394	<i>Chem. Eur. J.</i> 2016 , 22, 14998 – 15005
$[Cd_2(L)(4,5-idc)(H_2O)_4]$	360	521	ACS Appl. Mater. Interfaces 2020 , 12, 41776–41784
SNNU-301	370	480	ACS Appl. Mater. Interfaces 2022 , 14, 55997–56006
Zn-CP	360	-	This work

Table S2. Comparison of solid-state excitation and emission of CPs based on 2,5-Dihydroxyterephthalic (H₄dhtp)

Table S3. Comparison of the performance of luminescent MOF materials for water sensing

MOF materials	Media	Linear ranges (%v/v)	Detection method	LOD (%v/v)	Ref.
Eu-MOFs/N,S-CDs	EtOH	0.05-4	Shifted- emission and turn-on	0.03	Anal. Chem. 2016 , 88, 1748–1752
Mg(DHT)	THF	0-1	ESIPT and Turn-on	-	Dalton Trans., 2021,50, 6901- 6912
Tb ³⁺ @p-CDs/MOF	EtOH	0-30	Shifted- emission	0.28	<i>Dalton Trans.</i> , 2017 ,46, 7098- 7105
Eu _{0.05} Tb _{0.95} (OBA)(H ₂ O)Cl	DMF	0-0.8	Turn-on	0.10	<i>Dalton Trans.</i> , 2021 ,50, 143-150

	DMF	0-12.4		0.085	
	ACN	0-10	Ratiometric	0.094	
	DMSO	0-4		0.046	
DEC En MOE	THF	0-1.8		0.032	Anal. Chem. 2020,
K0G@Eu-MOF	MeOH	0-3.5		0.032	92, 8974-8982
	EtOH	0-1		0.028	
	<i>i</i> -PrOH	0-0.8		0.016	
	<i>n</i> -BuOH	0-0.4		0.021	
E110 02 DV0 18-MOF	EtOH	0-0.3	Turn-off	0.1	Anal. Chem. 2019,
	Lion	0 0.5		0.1	91, 3, 2148–2154
			FSIPT and		ACS Appl. Mater.
SNNU-301	DMSO	0-5.2	Turn-on	0.011	Interfaces 2022,
			1 4111-011		14, 55997–56006
			ESIPT by		ACS Appl Mater
[Cd ₂ (4,5-idc)(2,5-	DME	0.50	shifted-	0.25	ACS Appl. Maler.
tpt)(H ₂ O) ₄]	DIVIF	0-30	emission		<i>Interjaces</i> 2020,
			and turn-off		12,41//0-41/84
	EtOH	0-15	ESIPT and		J. Mater. Chem. C,
Zn-db-3	MeOH	0-10	shifted	0.05	2022 , 10, 7558–
	THF	0-10	emission		7566
	MoOH	0_12	ESIPT and	0.08	
Zn-CP	E+OU	0^{-12}	shifted	0.00	
	LIOH	0-12	emission	0.00	This work
Zn CD II	MeOH	0-20	ESIPT and	0.05	
Zn-Cr-11	EtOH	1-10	turn-on	0.04	

Note: DHT= 2,5-dihydroxyterephthalic acid, $H_2OBA = 4,4'$ - oxybisbenzoic acid, R6G = Rhodamine 6G dye, 2,5-tpt = 2,5-dihydroxyterephthalic acid and 4,5-idc = 4,5-imidazoledicarboxylic acid

 Table S4. Comparison of luminescence intensity in different alcohol solvents of Zn-CP probe

Solvents	Luminescence intensity (a.u.)
Methanol	2.62×10^4
Ethanol	$6.79 \ge 10^3$
<i>n</i> -Propanol	$1.83 \ge 10^3$
<i>n</i> -Butanol	$1.68 \ge 10^3$

MOF materials	Media	Linear ranges (%v/v)	Detection method	LOD (%v/v)	Ref.
MOF-76	Hydrated Ethyl	0.6-5.5	Turn-on	0.82	J. Rare Earths., 2019 37 225-231
	Fuel (HEAF)				2017, 37, 223 231
NOCDs	real alcoholic beverage	0.125-4	Quenching	0.11	<i>RSC Adv.</i> , 2020 , 10, 22522–22532
Zn-MOF	EtOH	0-2.44	Turn-on	0.07	<i>Dalton Trans.</i> , 2020 ,49, 10240- 10249
Zn-CP	EtOH <i>n</i> -PrOH <i>n</i> -BuOH	5-30 5-25 5-25	Turn-on	0.28 0.52 0.35	This work

Table S5. Comparison of the performance of luminescent materials for methanol sensing