·Supplementary Materials for

Three-Dimensional NiCoS Nanotubes@NiCo-LDH Nanosheets Core-Shell Heterostructure for High-Rate Capability Alkaline Zinc-Based Batteries

Linxi Dai, Shangshu Peng, Xinhai Wang, Bo Chen, Yang Wu, Quan Xie, Yunjun Ruan* Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China. *Corresponding author E-mail: yjruan@gzu.edu.cn (Yunjun Ruan)

Figure S1. SEM image of (a)NF and (b)NiCo-LDH nanosheets on Ni foam.

Figure S2. GCD curves of the NiCoS@NiCo-LDH, NiCoS, and NiCo-LDH at 1 A g⁻¹.

Figure S3. (a) CV curves and (b) GCD curves of NiCo-LDH. (c) CV curves and (d) GCD curves of NiCoS.

Figure S4.(a) GCD curves for various current densities of NiCoS//Zn battery.(b) Rate performance and coulombic efficiency of NiCoS//Zn battery

Battery	Area capacity	Reference	
NiCoS@NiCo-LDH//Zn	$0.54 \text{ mAh cm}^{-2}(5 \text{ mA cm}^{-2})$	This work	
FCO//Zn	0.24 mAh cm ⁻² (4 mA cm ⁻²)	1	
COHF//Zn	0.265 mAh cm ⁻² (4 mA cm ⁻²)	2	
CNF@NiCo ₂ S ₄ //Zn	$0.32 \text{ mAh cm}^{-2} (2 \text{ mA cm}^{-2})$	3	
NiCo LDH@Ag NW//Zn	0.12 mAh cm ⁻² (0.1 mA cm ⁻²)	4	
P-NiCo ₂ O _{4-x} //Zn	0.24 mAh cm ⁻² (2 mA cm ⁻²)	5	
Ni@NiO//Zn	0.112 mAh cm ⁻² (4 mA cm ⁻²)	6	
CC-CF@NiO//CC-CF@ZnO	0.39 mAh cm ⁻² (0.5 mA cm ⁻²)	7	

 Table S1. Comparison of area capacity of alkaline Zn-based batteries.

Battery	Electrolyte	Cycle performance	Reference (
NiCoS@NiCo-LDH//Zn	6M KOH + sat. ZnO	95.9% after 3000cycles	This work
Ni-NiO/CC//Zn	6M KOH+0.5M ZnAc ₂	87.5% after 2000cycles	8
NiCo ₂ O ₄ //Zn plate	6M KOH+0.1M ZnAc ₂	63.2% after 1000cycles	9
Ni ₂ P//Zn@CF	1M KOH + 20mM ZnAc ₂	80.0% after 1500cycles	10
NiCo-90//Zn foil	2.5M KOH + sat. ZnO	73.0% after 850cycles	11
Co-Ni ₃ Se ₂ //Zn foil	1M KOH	77.9% after 100cycles	12
FNCP//Zn	1M KOH	90.6% after 2000cycles	13
Al-CoNiDH-5%//Zn	2.5M KOH + sat. ZnO	64.4% after 2000cycles	14
Ni ₃ S ₂ /Ov-Ni(OH) ₂ //Zn	1M KOH + 20mM ZnAc ₂	93.2% after 3000cycles	15
CNF@NiCo ₂ S ₄ //Zn	3M KOH+0.1M ZnAc ₂	83.0% after 2000 cycles	3
Ni ₃ S ₂ @PEDOT//Zn	1M KOH+20mM ZnAc ₂	97.3% after 2000 cycles	16
Co ₃ O ₄ @NiO//Zn@Cu	6М КОН	89% after 500cycles	17
foil			
CC-CF@NiO//CC-	2M KOH + sat. ZnO	72.9% after 2400cycles	7
CF@ZnO			

Table S2. Cycling performance of different alkaline Zn-based batteries.

Battery	Electrolyte	Energy density /Wh kg ⁻¹	Power density /kW kg ⁻¹	Reference
NiCoS@NiCo-LDH//Zn	6M KOH + sat. ZnO	435.3	4.1	This work
Ni ₃ S ₂ /OV-Ni(OH) ₂ //Zn	1M KOH+20mM ZnAc ₂	384.6	1.73	15
Ni ₁₂ P ₅ //Zn	1M K ₂ CO ₃ +2M kF+4M KOH + sat. ZnO	287.9	5.1	18
NCS@NCH//Zn	2M KOH+0.02M Zn(CH ₃ COO) ₂ ·2H ₂ O	194.2	0.72	19
Ni/NiO-BCF//Zn	6M KOH + 0.5mM Zn(Ac) ₂	313.4	0.66	20
Ni(OH) ₂ /CNFs//Zn	6M KOH+1M LiOH, and PAAS saturated	325	1.23	21
	with ZnO gel.			
R-Co ₃ O ₄ //Zn	6M KOH saturated with $Zn(Ac)_2$	295.5	0.84	22
NiCo ₂ O ₄ //Zn	1M KOH and 20mM Zn(Ac) ₂	248.3	2.2	23
Ni ₃ S ₂ @PANI//Zn	$6M \text{ KOH} + 0.2M \text{ Zn}(\text{CH}_3\text{COO})_2$	308	6.9	24
CC-CF@NiO//CC-	2M KOH + sat. ZnO	355.7	0.46	7
CF@ZnO				
Co ₃ O ₄ @NiO//Zn	6M KOH sat. ZnO	215.5	3.45	17

Table	S 3.	Electroc	chemical	performance	e of differ	ent alkaline	Zn-based	batteries.
I abic	00.	Licenoe	monnour	periormane	of uniter	ont ananno	Li ouseu	outteries.

References

- J. Xie, H. Zhang, F. Yang, X. Cao, X. Liu and X. Lu, *Chemical Communications*, 2022, **58**, 3977-3980.
- J. Wu, Y. Lin, R. Qin, Y. Zeng and X. Lu, ACS Sustainable Chemistry & Engineering, 2020, 8, 1464-1470.
- Z. Cui, S. Shen, J. Yu, J. Si, D. Cai and Q. Wang, *Chemical Engineering Journal*, 2021, 426, 130068.
- 4 X. Xuan, M. Qian, L. Pan, T. Lu, Y. Gao, L. Han, L. Wan, Y. Niu and S. Gong, *JOURNAL OF ENERGY CHEMISTRY*, 2022, **70**, 593-603.
- 5 Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie and X. Lu, *ADVANCED MATERIALS*, 2018, **30**, 1802396.
- 6 F. Wang, Y. Lu, S. Zeng, Y. Song, D. Zheng, W. Xu and X. Lu, *CHEMELECTROCHEM*, 2020, 7, 4572-4577.
- J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu and J. Wang, *ADVANCED MATERIALS*, 2016, 28, 8732-8739.
- 8 L. Li, L. Jiang, Y. Qing, Y. Zeng, Z. Zhang, L. Xiao, X. Lu and Y. Wu, *Journal of Materials Chemistry A*, 2020, 8, 565-572.
- 9 W. Shang, W. Yu, P. Tan, B. Chen, H. Xu and M. Ni, JOURNAL OF POWER SOURCES, 2019, 421, 6-13.
- J. Wen, Z. Feng, H. Liu, T. Chen, Y. Yang, S. Li, S. Sheng and G. Fang, *Applied Surface Science*, 2019, 485, 462-467.
- H. Chen, Z. Shen, Z. Pan, Z. Kou, X. Liu, H. Zhang, Q. Gu, C. Guan and J. Wang, *ADVANCED SCIENCE*, 2019, 6, 1802002.
- 12 D. A. Reddy, H. Lee, M. Gopannagari, D. P. Kumar, K. Kwon, H. D. Yoo and T. K. Kim, *INTERNATIONAL JOURNAL OF HYDROGEN ENERGY*, 2020, **45**, 7741-7750.
- W. Liu, Y. Chen, Y. Wang, Q. Zhao, L. Chen, W. Wei and J. Ma, *ENERGY STORAGE MATERIALS*, 2021, 37, 336-344.
- 14 X. Zhu, Y. Wu, Y. Lu, Y. Sun, Q. Wu, Y. Pang, Z. Shen and H. Chen, JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 587, 693-702.
- 15 X. Wang, Z. Yang, P. Zhang, Y. He, Z.-A. Qiao, X. Zhai and H. Huang, JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 855, 157488.
- 16 Y. He, P. Zhang, H. Huang, X. Li, X. Zhai, B. Chen and Z. Guo, *ELECTROCHIMICA ACTA*, 2020, 343, 136140.
- 17 Z. Lu, X. Wu, X. Lei, Y. Li and X. Sun, *INORGANIC CHEMISTRY FRONTIERS*, 2015, 2, 184-187.
- Z. Wang, P. Shi, Q. Liu, J. Li, Y. Gan, J. Yao, J. Xia, X. Liu, X. Chen, K. Qian, X. Liu, L. Lv, G. Ma, L. Tao,
 J. Zhang, H. Wang, H. Wan and H. Wang, *Journal of Power Sources*, 2022, 550, 232170.
- M. Cui, X. Bai, J. Zhu, C. Han, Y. Huang, L. Kang, C. Zhi and H. Li, *ENERGY STORAGE MATERIALS*, 2021, 36, 427-434.
- 20 L. Jiang, L. Li, S. Luo, H. Xu, L. Xia, H. Wang, X. Liu, Y. Wu and Y. Qing, *NANOSCALE*, 2020, 12, 14651-14660.
- Y. Jian, D. Wang, M. Huang, H.-L. Jia, J. Sun, X. Song and M. Guan, ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5, 6827-6834.
- 22 Y. Lu, J. Wang, S. Zeng, L. Zhou, W. Xu, D. Zheng, J. Liu, Y. Zeng and X. Lu, JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7, 21678-21683.
- 23 H. Z. Zhang, X. Y. Zhang, H. D. Li, Y. F. Zhang, Y. X. Zeng, Y. X. Tong, P. Zhang and X. H. Lu, GREEN ENERGY & ENVIRONMENT, 2018, 3, 56-62.
- L. Zhou, X. Zhang, D. Zheng, W. Xu, J. Liu and X. Lu, *JOURNAL OF MATERIALS CHEMISTRY A*, 2019, 7, 10629-10635.