Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Rational design of a lysosome-targeted fluorescence probes for monitoring the generation of

hydroxyl radicals in ferroptosis pathways

Lili Zhong, ^{a, 1} Datian Fu, ^{b,1} Jin Xu, ^c Linyan Tan, ^d Haimei Wu,^{e*}

^a Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China.

^b Department of Pharmacy, Hainan women and children's medical center, Haikou, Hainan, 570312, China.

^c Pharmaceutical and bioengineering school, Hunan Chemical Vocational Technology College, Zhuzhou, 412006, China.

^d Department of Pharmacy, Tropical Agricultural Technology College, Hainan Vocational University, Haikou, Hainan, 570216, China

^e Department of Clinical Pharmacy, Hainan Cancer Hospital, Haikou, Hainan, 570100, China.

* Corresponding authors:

Haimei Wu, E-mail: wu634202863@126.com

¹ These authors contribute equally to this work.

Scheme S1. The synthesis route of HCy-Lyso.

Fig. S1 Calculation the fluorescence quantum yield of HCy-Lyso, HCy-Lyso treating with TCBQ/H₂O₂ and RhB in pH 4.0 PBS solution and EtOH, respectively. Absorption spectra, fluorescence emission spectra, and plot of integrated fluorescence intensity (525-800 nm) versus absorbance at 510 nm of (a) HCy-Lyso, (b) HCy-Lyso treating with TCBQ/H₂O₂, and (c) RhB at various concentrations.

Fig. S2 (A) The fluorescence spectra of 10 μ M HCy-Lyso toward various ROS in pH 4.0 phosphate buffer: control group; •OH, 10 μ M TCBQ + 10 μ M H₂O₂; 100 μ M OCl⁻; ¹O₂ (100 μ M H₂O₂ + 500 μ M OCl⁻); 100 μ M NO; 100 μ M H₂O₂; 100 μ M ONOO⁻; 100 μ M TBHP. (B) The corresponding other ROS from (A). $\lambda_{ex/em} = 510/592$ nm.

Fig. S3 Relative viability of 4T1 cells treated with various concentrations of HCy-Lyso (0-10 μ M) for 12 h. Data are presented as the mean \pm SD (n = 3).

Fig. S4 Calcein-AM/PI co-staining of 4T1 cells after incubated with different concentrations of HCy-Lyso (0-10 μ M) for 12 h in the dark. Scale bar: 100 μ m.

Fig. S5 ¹H NMR spectra of HCy-OH.

Fig. S6 ¹³C NMR spectra of HCy-OH.

Fig. S7 HRMS spectra of HCy-OH.

Fig. S8 ¹H NMR spectra of HCy-Lyso.

Fig. S9 ¹³C NMR spectra of HCy-Lyso.

Fig. S10 HRMS spectra of HCy-Lyso.

Fig. S11 FTIR spectra of HCy-Lyso and HCy-OH.

Fig. S12 (A) Thin layer chromatography plate of HCy-OH reaction solution, run with dichloromethane and methanol as eluent. (B) Thin layer chromatography of HCy-Lyso mixture with different eluent, (i) dichloromethane and methanol; (ii) petroleum ether and ethyl acetate.