Fullerene- C_{60} and PCBM as interlayers in regular and inverted lead-free PSCs using $CH_3NH_3SnI_3$: An analysis of device performance and defect density dependence by SCAPS-1D

Vívian Helene Diniz Araújo, Ana Flávia Nogueira Juliana Cristina Tristão and Leandro José dos Santos

1 Electronic Supplementary Information (ESI)

D/M-+	PEDOT:PSS	Spiro-MeOTAD	${ m TiO}_2$	
Parameters/Materials	[2]	[1]	[1]	
Thickness (nm)	200	200	30	
\mathbf{E}_{g} (eV)	2.20	3.17	3.20	
$\chi(\mathbf{eV})$	2.90	2.05	4.26	
$arepsilon {f r}$	3.00	3.00	9.00	
$\mathbf{N}_c~(\mathbf{cm}^{-3})$	$2.2 \mathrm{x} 10^{15}$	$2.50 \ge 10^{18}$	$2.00 \ge 10^{18}$	
$\mathbf{N}_v ~(\mathbf{cm}^{-3})$	$1.8 \mathrm{x} 10^{18}$	$1.80 \ge 10^{19}$	$1.80 \ge 10^{19}$	
$\mu_e ~({ m cm}^2 { m V}^{-1} { m s}^{-1})$	$1.00 \ge 10^{-2}$	$2.00 \ge 10^{-4}$	20	
$\mu_h \; ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	$2.00 \ge 10^{-4}$	$2.00 \ge 10^{-4}$	10	
$\mathbf{N}_A~(\mathbf{cm}^{-3})$	$1.0 \mathrm{x} 10^{15}$	$1.00 \ge 10^{17}$	-	
$\mathbf{N}_D~(\mathbf{cm}^{-3})$	-	_	$1.00 \ge 10^{16}$	
$\mathbf{N}_t ~(\mathbf{cm}^{-3})$	$1.0 \mathrm{x} 10^{14}$	$1.00 \ge 10^{13}$	$1.00 \ge 10^{15}$	

Table S1: Input parameters of PEDOT:PSS, Spiro-MeOTAD and TiO₂ for the subsection 3.1 simulations.

Table S2: PCE of simulated PSCs using different HTLs and ETLs for n-i-p and p-i-n PSCs with $N_t=4.5\times10^{17}$ cm⁻³. The perovskite thickness was 350 nm and the ETL/HTL thickness was 30 nm and 200 nm, respectively.

HTL/ETL Regular PSC	\mathbf{TiO}_2	ZnO	HTL/ETL Inverted PSC	\mathbf{TiO}_2	ZnO
Spiro-MeOTAD	6.12%	6.40%	PEDOT:PSS	1.17%	1.10%
CuI	6.54%	6.89%	CuI	1.06%	1.35%

Table S3: Influence of MASI thickness in simulated PSCs with CuI and ZnO as HTL/ETL (30 nm) in regular and inverted configurations, using $N_t=4.5\times10^{17}$ cm⁻³.

and mitoriced coming	ai a 010110	,	01110						
PSC n-i-p	\mathbf{V}_{oc} (V)	$\mathbf{J}_{sc} \ (\mathbf{mA} / \ \mathbf{cm}^2)$	FF (%)	PCE (%)	PSC p-i-n	\mathbf{V}_{oc} (V)	$J_{sc} (mA/cm^2)$	FF (%)	PCE (%)
CuI/MASI(150nm)/ZnO	0.66	17.20	49.97	5.70	CuI/MASI(150nm)/ZnO	0.65	15.35	37.25	3.72
CuI/MASI(200nm)/ZnO	0.68	17.53	54.60	6.53	CuI/MASI(200nm)/ZnO	0.65	10.87	43.00	3.05
CuI/MASI(250nm)/ZnO	0.68	18.28	54.40	6.81	CuI/MASI(250nm)/ZnO	0.64	8.42	45.24	2.45
CuI/MASI(300nm)/ZnO	0.68	18.61	53.96	6.88	CuI/MASI(300nm)/ZnO	0.63	6.57	44.83	1.86
CuI/MASI(350nm)/ZnO	0.68	18.69	53.82	6.89	CuI/MASI(350nm)/ZnO	0.62	4.96	45.12	1.38
CuI/MASI(400nm)/ZnO	0.68	18.71	53.79	6.90	CuI/MASI(400nm)/ZnO	0.61	3.73	45.79	1.03
CuI/MASI(450nm)/ZnO	0.68	18.71	53.79	6.90	CuI/MASI(450nm)/ZnO	0.59	2.83	46.57	0.78
CuI/MASI(500nm)/ZnO	0.68	18.71	53.79	6.90	CuI/MASI(500nm)/ZnO	0.58	2.17	47.34	0.60
CuI/MASI(550nm)/ZnO	0.68	18.72	53.78	6.90	CuI/MASI(550nm)/ZnO	0.57	1.68	48.03	0.46
CuI/MASI(600nm)/ZnO	0.68	18.72	53.78	6.90	CuI/MASI(600nm)/ZnO	0.56	1.33	48.66	0.36
CuI/MASI(650nm)/ZnO	0.68	18.72	53.78	6.90	CuI/MASI(650nm)/ZnO	0.55	1.06	49.23	0.28
CuI/MASI(700nm)/ZnO	0.68	18.72	53.77	6.90	CuI/MASI(700nm)/ZnO	0.54	0.85	49.72	0.23
CuI/MASI(750nm)/ZnO	0.68	18.72	53.77	6.90	CuI/MASI(750nm)/ZnO	0.53	0.69	50.19	0.18
CuI/MASI(800nm)/ZnO	0.68	18.72	53.77	6.90	CuI/MASI(800nm)/ZnO	0.52	0.57	50.58	0.15

Figure S1: Output parameters varying back metal contacts in a) regular and b) inverted PSCs

Table S4: PCE in regular and inverted configurations using $N_t = 4.5 \times 10^{13} \text{ cm}^{-3}$, with and without interlayers.

\mathbf{PSC}	Conf.	\mathbf{V}_{oc} (V)	$J_{sc} (mA/cm2)$	FF (%)	PCE (%)
CuI/MASI/ZnO	n-i-p	1.02	33.81	83.13	28.64
CuI/MASI/PCBM/ZnO	n-i-p	1.02	33.84	83.10	28.65
$CuI/MASI/C_{60}/ZnO$	n-i-p	1.02	33.92	77.78	26.92
CuI/MASI/ZnO	p-i-n	1.02	32.26	84.33	27.71
CuI/MASI/PCBM/ZnO	p-i-n	1.02	32.38	84.17	27.80
$CuI/MASI/C_{60}/ZnO$	p-i-n	1.02	32.26	79.01	25.99

Figure S2: Energy diagram of simulated inverted PSCs. a) CuI/MASI/ZnO, b) CuI/MASI/C₆₀/ZnO, c) CuI/MASI/PCBM/ZnO, using N_t =4.5x10¹⁷ cm⁻³ and MASI thickness at 150 nm.

References

- H.-J. Du, W.-C. Wang, and J.-Z. Zhu. Device simulation of lead-free ch3nh3sni3 perovskite solar cells with high efficiency. *Chinese Physics B*, 25(10):108802, 2016.
- [2] H. Sharma, V. K. Verma, R. C. Singh, P. K. Singh, and A. Basak. Numerical analysis of high-efficiency ch3nh3pbi3 perovskite solar cell with pedot: Pss hole transport material using scaps 1d simulator. *Journal* of *Electronic Materials*, pages 1–13, 2023.