
Contents

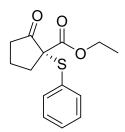
Supporting Information	2
General experimental methods)
Procedure for the sulfenylation of ethyl 2-oxocyclopentane-1-carboxylate	5
Procedure for the oxidation of thioanisole4	ŀ
Procedure for the Michael addition of 4-methoxybenzenethiol to chalcone	5
Procedure for the direct reductive amination of 4-nitrobenzaldehyde and p-anisidine?	7
Procedure for the asymmetric Biginelli reaction of 4-nitrobenzaldehyde, thiourea, and ethyl acetoacetate	3

Supporting Information General experimental methods

Reagents and solvents were purchased from Sigma Aldrich, DLD scientific, and Merck and unless otherwise noted used without further purification. All solvents were reagent grade or better. Deuterated solvents were used as received. Dry ice was made from with tech grade-wet CO₂ (90%). Thin layer chromatography (TLC) was performed using Merck Kieselgel 60 F254 plates. Synthetic steps were characterised using LC-MS (Shimadzu 2020 UFLC-MS, Japan) or GC-MS-QP2010 Ultra (Shimadzu, Japan). Chiral HPLC (Agilent technologies) was used for the determination of enantiomeric excess. NMR data were recorded using a Bruker AVANCE III 600 MHz at room temperature. The NMR chemical shifts (δ) are reported in parts per million (ppm) relative to the residual solvent peak (¹H-NMR δ 7.26 for CDCl₃, δ 3.31 for CD₃OD; ¹³C-NMR δ 77.0 for CDCl₃, δ 49.00 for CD₃OD). ¹³C NMR is the APT experiment. The APT experiment yields methine (CH) and methyl (CH₃) signals positive and quaternary (C) and methylene (CH₂) signals negative.

Procedure for the sulfenylation of ethyl 2-oxocyclopentane-1-carboxylate

Scheme 1: Synthesis of Ethyl 2-oxo-1-(phenylthio)cyclopentanecarboxylate (1b).

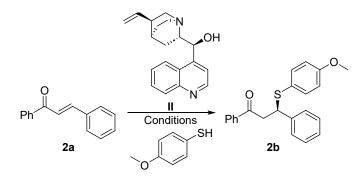

Procedure A: Green solvent

A mixture of ethyl 2-oxocyclopentane-1-carboxylate (1a, 0.19 mmol), N-(Phenylthio)phthalimide (1.2 equiv.), (S)- α , α -Bis(3,5-dimethylphenyl)-2-pyrrolidinemethanol (I, 5 mol%), and green solvent (0.1 M) were added into a 10 mL microwave reaction tube. The reaction was stirred for 3 hours at RT. Thereafter, the solvent was evaporated under reduced pressure. The crude mixture was purified by flash column chromatography using a mixture of ethyl acetate (0-5%) in hexane (100-95%).

Procedure B: Liquid CO₂

А mixture of ethyl 2-oxocyclopentane-1-carboxylate (1a,0.19 mmol), N-(Phenylthio)phthalimide $(1.2 \text{ equiv.}), (S)-\alpha, \alpha$ -Bis(3,5-dimethylphenyl)-2-pyrrolidinemethanol (I, 5 mol%), and dry ice (CO₂, 2g) were added into a 10 mL microwave reaction tube and placed into a high-pressure reaction vessel (Parr instrument company, USA). The reaction vessel was then placed in water bath at 25 °C to warm up. The vessel was left to stir at RT for 3 hours. Thereafter, the reaction vessel was placed in an ice bath to cool, and the pressure was released. Hexane was added to the microwave reaction tube and the crude mixture was purified by flash column chromatography using a mixture of ethyl acetate (0-5%) in hexane (100-95%).

Ethyl 2-oxo-1-(phenylthio)cyclopentanecarboxylate (1b)¹


Compound **1b** was prepared according to the preceding general procedure. White solid. Yield: 99%.

¹H NMR (600 MHz, CDCl₃): δ = 1.25 (t, 3H), 1.94-2.15 (m, 3H), 2.34-2.60 (m, 3H), 4.2 (m, 2H), 7.3-7.38 (m, 3H), 7.54-7.55 (m, 2H).

¹³C NMR (150 MHz, CDCl₃): δ = 14.1, 19.1, 35.0, 37.0, 62.5, 64.8, 129.0, 129.7, 130.3, 136.4, 169.4, 207.3

Enantiomeric excess: 84%, determined by HPLC (CHIRALART Cellulose-SC, hexane/ isopropanol = 99:1, flow rate 1 mL/min): tR = 19.63 min (minor), tR = 21.52 min (minor)

Procedure for the Michael addition of 4methoxybenzenethiol to chalcone

Scheme 2: Synthesis of 3-((4-methoxyphenyl)thio)-1,3-diphenylpropan-1-one (2b).

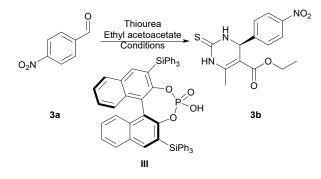
Procedure A: Green solvent

A mixture of *trans*-chalcone (**2a**, 0.24 mmol), 4-Methoxythiophenol (1.1 equiv.), cinchonine (**II**,1.5 mol%), and green solvent (0.33 M) were added into a 10 mL microwave reaction tube. The reaction was stirred for 4 hours at -20 °C. Thereafter, the solvent was evaporated under reduced pressure. The crude mixture was purified by flash column chromatography using a mixture of ethyl acetate (0-10%) in hexane (100-90%).

Procedure B: Liquid CO₂

A mixture of *trans*-chalcone (**2a**, 0.24 mmol), 4-Methoxythiophenol (1.1 equiv.), cinchonine (**II**, 1.5 mol%), and dry ice (CO₂, 2g) were added into a 10 mL microwave reaction tube and placed into a high-pressure reaction vessel. The vessel was left to stir at -20 °C for 4 hours. Thereafter, the reaction vessel was placed in an ice bath to cool, and the pressure was released. Hexane was added to the microwave reaction tube and the crude mixture was purified by flash column chromatography using a mixture of ethyl acetate (0-10%) in hexane (100-90%).

3-((4-methoxyphenyl)thio)-1,3-diphenylpropan-1-one (2b)²


Compound **2b** was prepared according to the preceding general procedure. White solid. Yield: 85%.

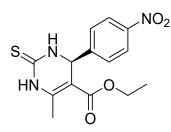
¹H NMR (600 MHz, CDCl₃): δ = 3.54-3.63 (m, 2H), 3.76 (s, 3H), 4.76-4.78 (t, 1H), 6.75 (d, 2H), 7.16-7.26 (m, 7H), 7.43 (t, 2H), 7.54 (t, 1H), 7.87 (d, 2H).

¹³C NMR (150 MHz, CDCl₃): δ = 44.4, 49.5, 55.4, 114.5, 124.4, 127.4, 128.0, 128.2, 128.5, 128.7, 133.3, 136.4, 137.0, 141.5, 160.0, 197.3.

Enantiomeric excess: 40%, determined by HPLC (CHIRALART Cellulose-SB, hexane/ isopropanol = 90:10, flow rate 0.5 mL/min): tR = 21.53 min (minor), tR = 22.76 min (minor)

Procedure for the asymmetric Biginelli reaction of 4nitrobenzaldehyde, thiourea, and ethyl acetoacetate

Scheme 3: Synthesis of Ethyl-6-methyl-4-(4-nitrophenyl)-2-thioxo-1,2,3,4tetrahydropyrimidine-5-carboxylate (**3b**).

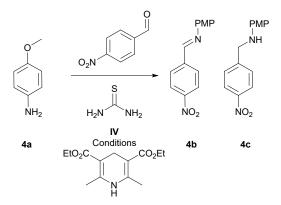

Procedure A: Green solvent

A mixture of 4-nitrobenzaldehyde (**3a**, 0.03 mmol), thiourea (1.2 equiv.), (S)-3,3'-Bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (**III**, 10 mol%), and green solvent (0.1 M), were added into a 10 mL microwave reaction tube. The reaction was stirred for 1 hour at RT. Thereafter, ethyl acetoacetate (3 equiv.) was added to the reaction and the reaction was stirred for 60 hour at 50 °C. Thereafter, the solvent was evaporated under reduced pressure. The crude mixture was purified by flash column chromatography using a mixture of ethyl acetate (0-30%) in hexane (100-70%).

Procedure B: scCO₂

A mixture of 4-nitrobenzaldehyde (**3a**, 0.03 mmol), thiourea (1.2 equiv.), ethyl acetoacetate (3 equiv.), (S)-3,3'-Bis(triphenylsilyl)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (**III**, 10 mol%), and dry ice (CO₂, 2g) were added into a 10 mL microwave reaction tube and placed into a high-pressure reaction vessel. The vessel was then placed in a preheated oil bath left to stir at 50 °C for 60 hours. Thereafter, the reaction vessel was placed in an ice bath to cool, and the pressure was released. Acetonitrile was added to the microwave reaction tube and the crude mixture was submitted for LC-MS analysis.

Ethyl-6-methyl-4-(4-nitrophenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (3b)³


Compound **3b** was prepared according to the preceding general procedure. white solid. Yield: 98%.

¹H NMR (600 MHz, CDCl₃): δ = 1.20 (t, 3H), 2.38 (s, 3H), 4.11-4.13 (m, 2H), 5.51 (d, 1H), 7.48 (d, 2H), 7.74 (brs, 1H), 8.13 (brs, 1H), 8.19 (d, 2H).

¹³C NMR (150 MHz, CDCl₃): δ = 14.3, 18.7, 55.6, 61.0, 102.3, 124.4, 127.9, 143.7, 147.9, 149.1, 165.0, 175.1.

Enantiomeric excess: 92%, determined by HPLC (CHIRALART Cellulose-SC, hexane/ isopropanol = 70:30, flow rate 0.5 mL/min): tR = 13.90 min (major), tR = 15.66 min (minor)

Procedure for the direct reductive amination of 4nitrobenzaldehyde and p-anisidine

Scheme 4: Synthesis of 4-methoxy-N-(4-nitrobenzyl)aniline (4c).

Procedure A: Green solvent

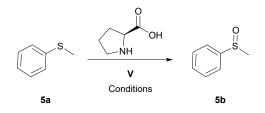

A mixture of p-Anisidine (**4a**, 0.24 mmol), 4-nitrobenzaldehyde (1.2 equiv.), Hantzsch ester (1.2 equiv.), thiourea (**IV**, 10 mol%), and green solvent (0.4 M) were added into a 10 mL microwave reaction tube. The reaction was stirred for 16 hours at 70 °C. Thereafter, water was

added to the reaction mixture to precipitate the product. The crude mixture was purified by flash column chromatography using a mixture of ethyl acetate (0-10%) in hexane (100-90%).

Procedure B: Liquid CO₂

A mixture of p-Anisidine (4a, 0.24 mmol), 4-nitrobenzaldehyde (1.2 equiv.), Hantzsch ester (1.2 equiv.), thiourea (IV, 10 mol%), and dry ice (CO_2 , 2g) were added into a 10 mL microwave reaction tube and placed into a high-pressure reaction vessel. The vessel was then placed in a preheated oil bath left to stir at 70 °C for 16 hours. Thereafter, the reaction vessel was placed in an ice bath to cool, and the pressure was released. Acetonitrile was added to the microwave reaction tube and the crude mixture was submitted for GC-MS analysis.

4-methoxy-N-(4-nitrobenzyl)aniline (4c)⁴



Compound **4c** was prepared according to the preceding general procedure. yellow solid. Yield: 90%.

¹H NMR (600 MHz, CD₃OD): δ = 3.67 (s, 3H), 4.39 (s, 2H), 6.56 (m, 2H), 6.70 (m, 2H), 7.58 (d, 2H), 8.16 (d, 2H).

¹³C NMR (150 MHz, CD₃OD): δ = 48.7, 56.2, 115.4, 115.9, 124.5, 129.2, 143.6, 148.3, 150.2, 153.6.

Procedure for the oxidation of thioanisole

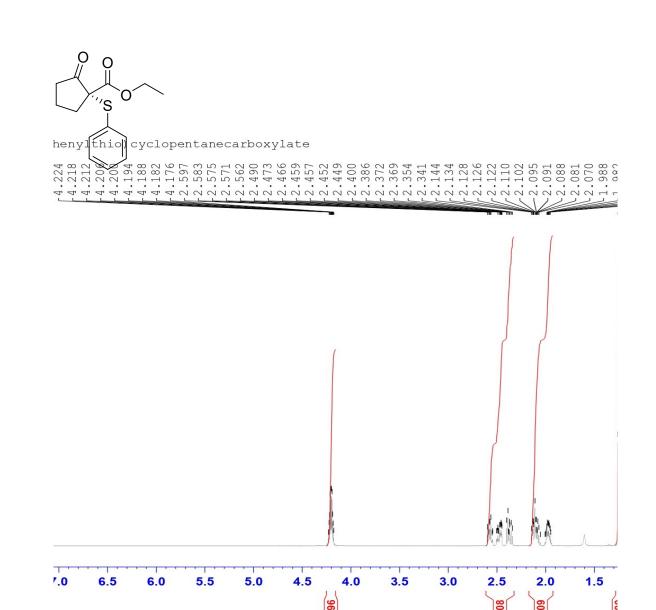
Scheme 5: Synthesis of methyl phenyl sulfoxide (5b).

Procedure A: Green solvent

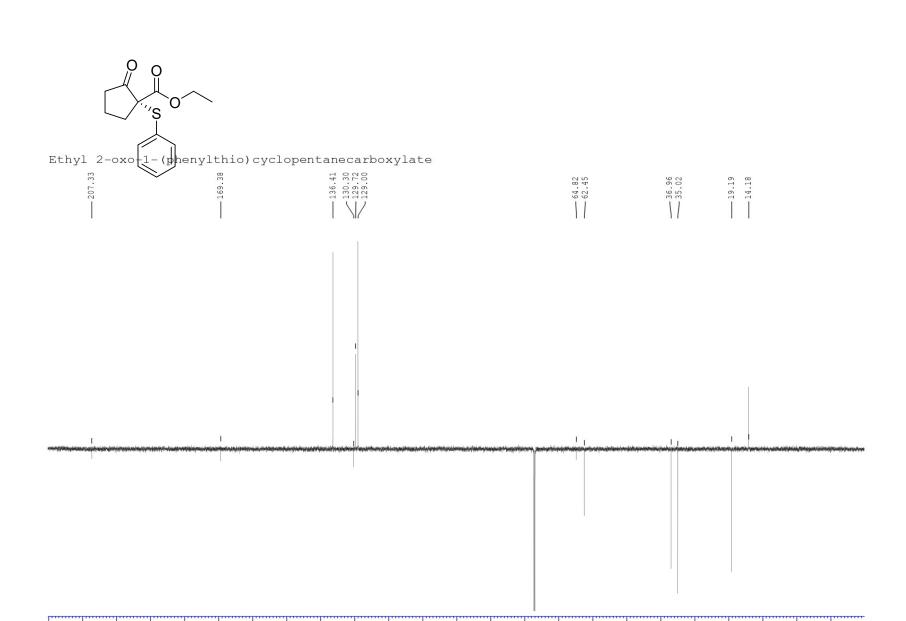
A mixture of thioanisole (**5a**, 0.24 mmol), L-proline (V, 0.01 equiv.), H_2O_2 (2.5 equiv.), and green solvent (3.8 M) were added into a 10 mL microwave reaction tube and placed into a

preheated oil bath. The reaction was stirred for 2 hours at 40 °C. Thereafter, the mixture was extracted with ethyl acetate. The resultant organic layer was dried over anhydrous MgSO₄, and the solvent was evaporated under reduced pressure.

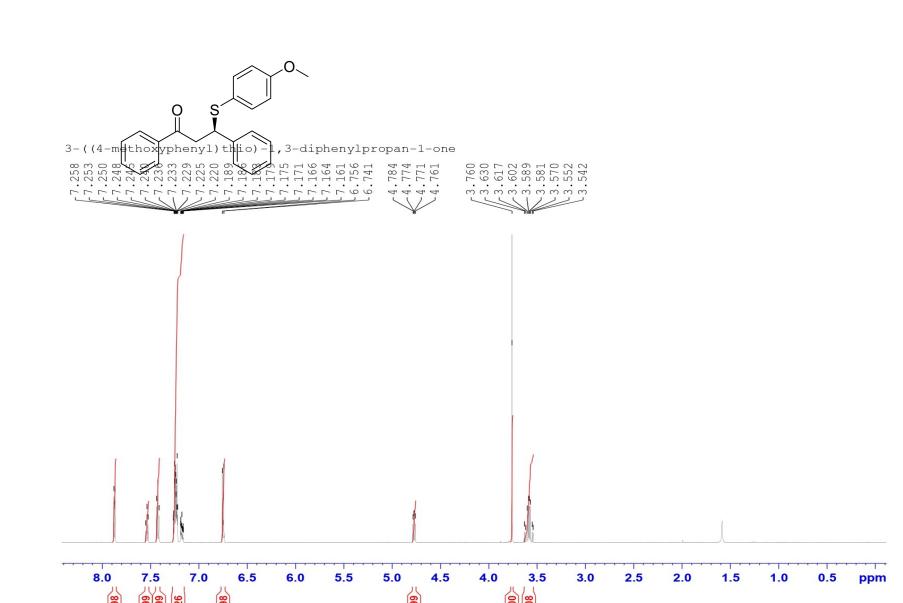
Procedure B: scCO₂

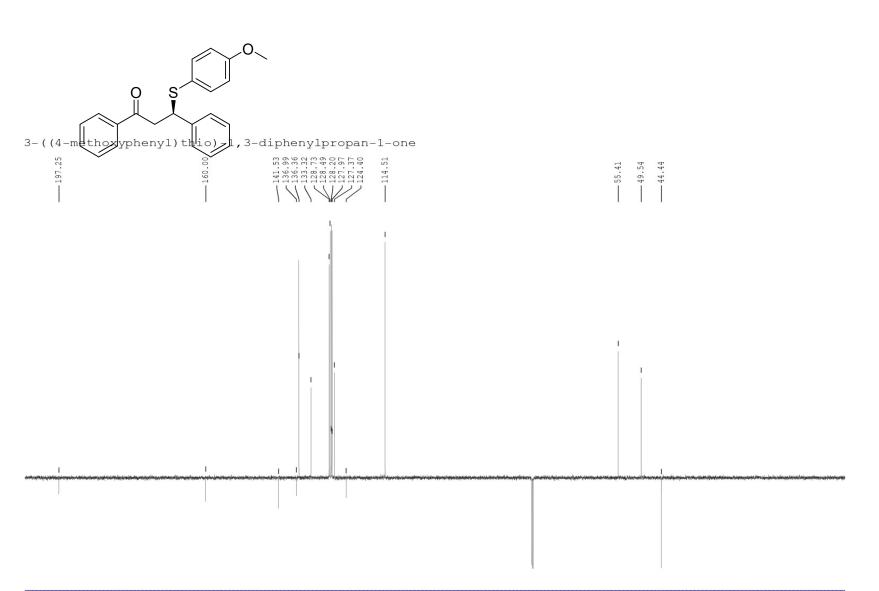

A mixture of thioanisole (**5a**, 0.24 mmol), L-proline (**V**, 0.01 equiv.), H_2O_2 (2.5 equiv.), and dry ice (CO₂, 2g) were added into a 10 mL microwave reaction tube and placed into a high-pressure reaction vessel. The reaction vessel was then placed in an oil bath preheated to 40 °C. The temperature was maintained by an external temperature probe connected to a digital hot plate. The pressure was monitored by a pressure gauge attached to the reaction vessel. After 2 hours, the high-pressure reaction vessel was placed in an ice bath to cool, and the pressure was released. Thereafter, acetonitrile was added to the microwave vessel, and the mixture was submitted for LC-MS analysis.

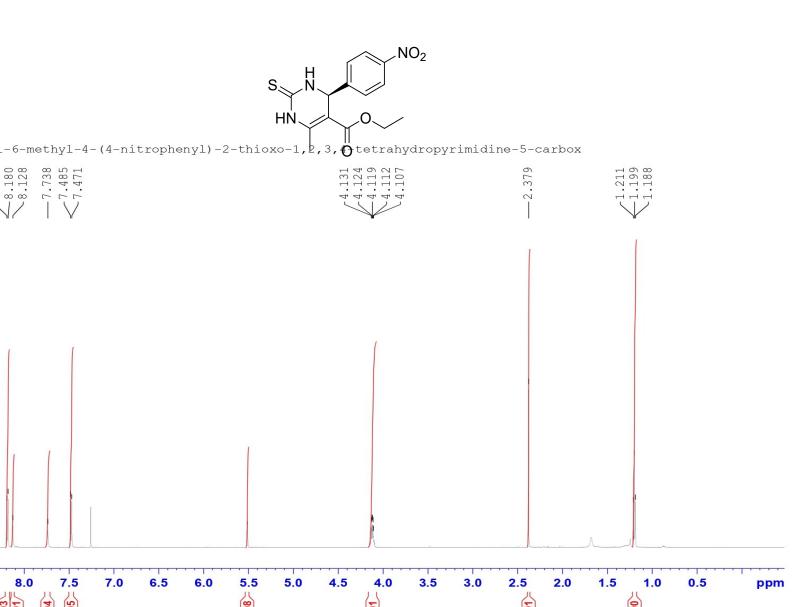
Methyl phenyl sulfoxide (5b)⁵

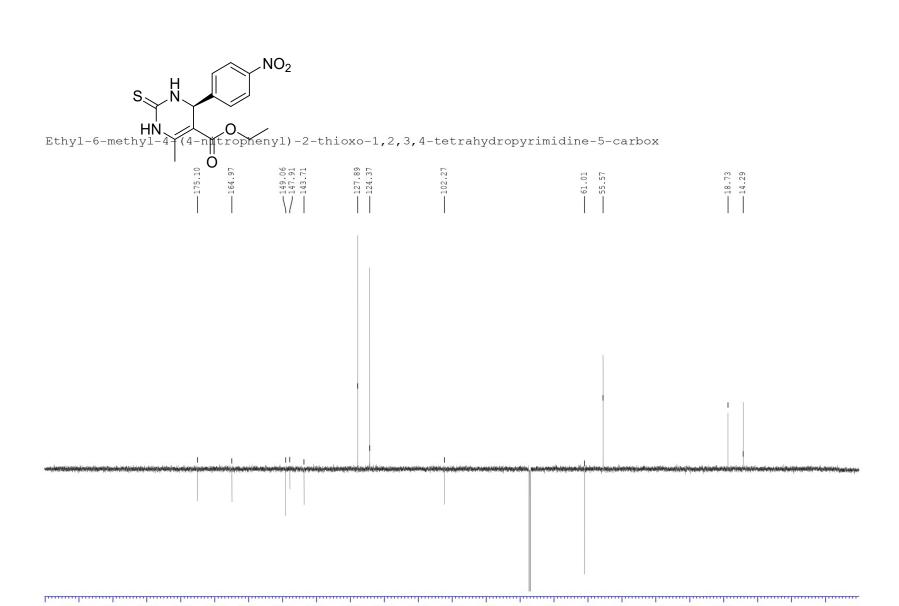


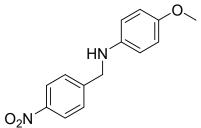
Compound **5b** was prepared according to the preceding general procedure. White solid. Yield: 99%.

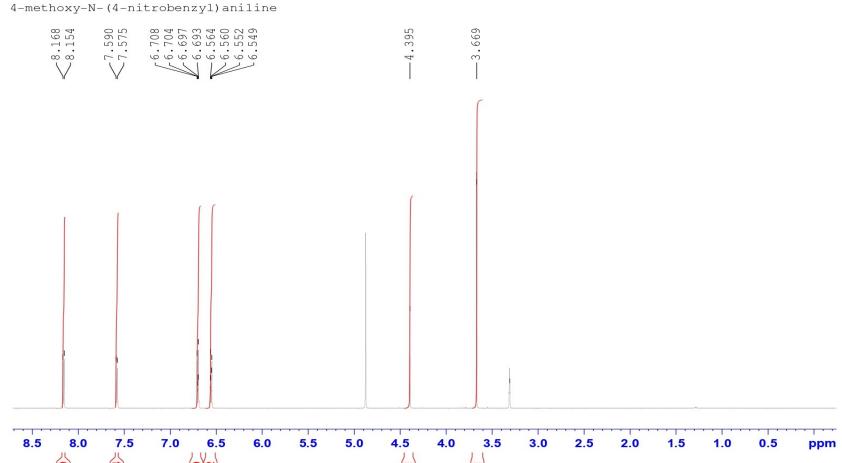

¹H NMR (600 MHz, CDCl₃): δ = 2.71 (s, 3H), 7.49-7.53 (m, 3H), 7.63 (d, 2H). ¹³C NMR (150 MHz, CDCl₃): δ = 44.0, 123.6, 129.5, 131.1, 145.8.


¹H NMR of Ethyl 2-oxo-1-(phenylthio)cyclopentanecarboxylate in CDCl₃ (1b)

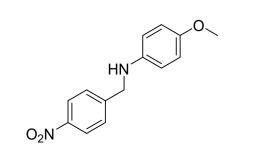

¹³C NMR of Ethyl 2-oxo-1-(phenylthio)cyclopentanecarboxylate in CDCl₃ (1b)

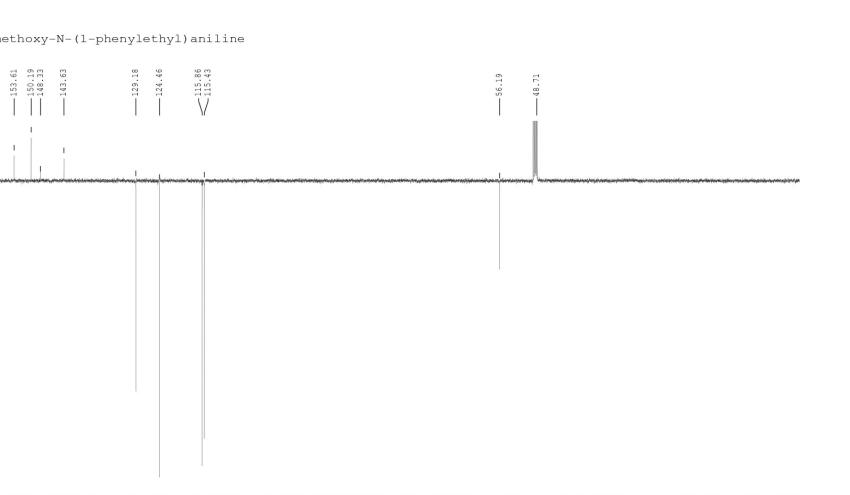

¹H NMR of 3-((4-methoxyphenyl)thio)-1,3-diphenylpropan-1-one in CDCl₃ (2b)

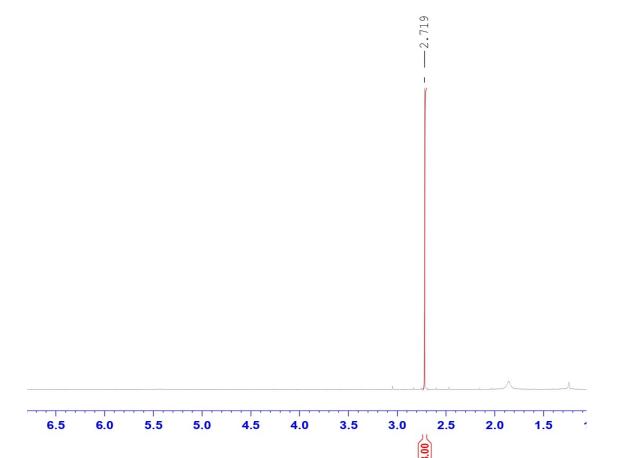

¹³C NMR of 3-((4-methoxyphenyl)thio)-1,3-diphenylpropan-1-one in CDCl₃ (2b)

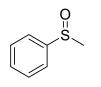


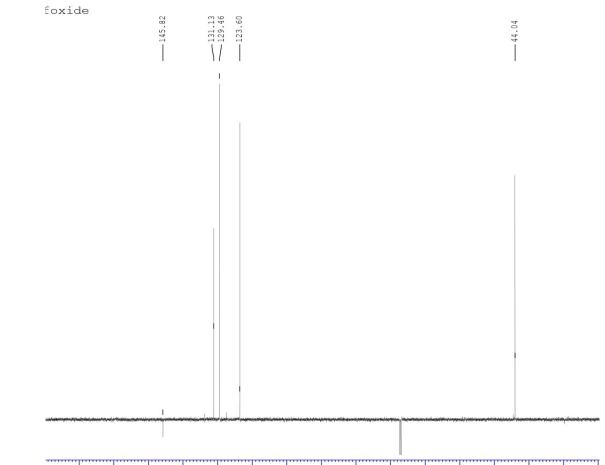
1,2,3,4-tetrahydropyrimidine-5-carboxylate in CDCl₃ (3b)

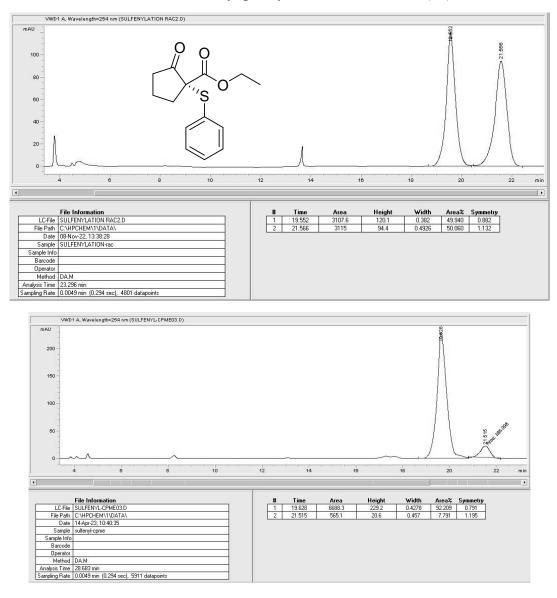


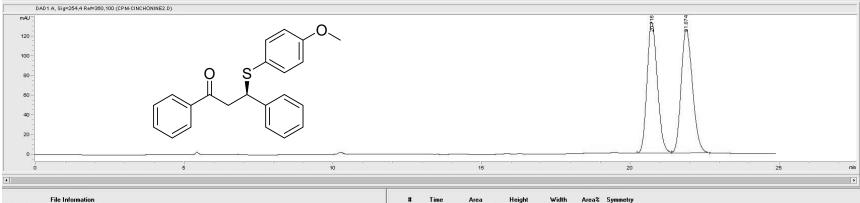

¹³C NMR of Ethyl-6-methyl-4-(4-nitrophenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in CDCl₃ (3b)

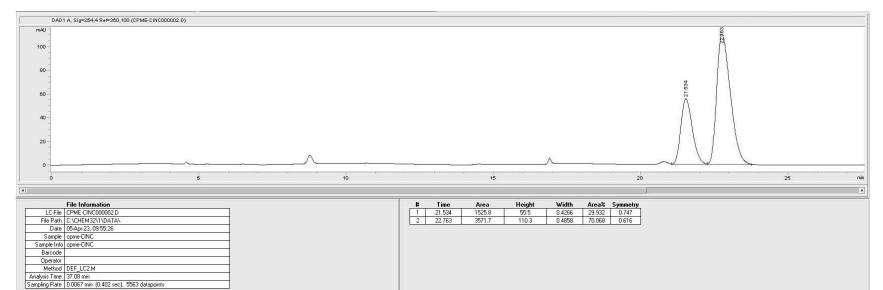

¹H NMR of 4-methoxy-N-(1-phenylethyl)aniline in CD₃OD (4b)

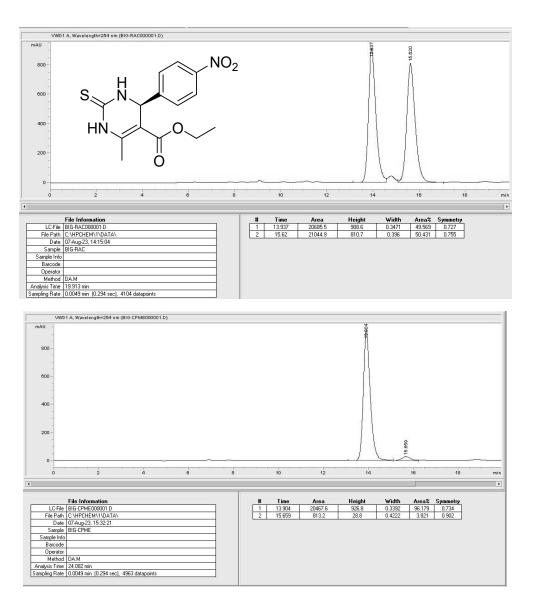



CD₃OD(4b)




¹H NMR of methyl phenyl sulfoxide in CDCl₃ (5b)





¹³C NMR of methyl phenyl sulfoxide in CDCl₃ (5b)

LC-File	CPM-CINCHONINE2.D	1	20.716	3216.9	133.1	0.376	49.100	0.813
File Path	C:\CHEM32\1\DATA\	2	21.874	3334.9	125.3	0.4164	50.900	0.773
Date	08-Mar-23, 16:52:57							
Sample	cpme-cinchonine							
Sample Info	cpme-cinchonine							
Barcode								
Operator								
Method	DEF_LC2.M							
Analysis Time								
Sampling Rate	0.0067 min (0.402 sec), 3741 datapoints							

References

- 1. L. Fang, A. Lin, H. Hu and C. Zhu, *Chemistry A European Journal*, 2009, **15**, 7039-7043.
- 2. J. Skarżewski, M. Zielińska-Błajet and I. Turowska-Tyrk, *Tetrahedron: Asymmetry*, 2001, **12**, 1923-1928.
- 3. N. Li, X.-H. Chen, J. Song, S.-W. Luo, W. Fan and L.-Z. Gong, *Journal of the American Chemical Society*, 2009, **131**, 15301-15310.
- 4. K. K. Popov, J. L. Campbell, O. Kysilka, J. Hosek, C. D. Davies, M. Pour and P. Kocovsky, *The Journal of Organic Chemistry*, 2021, **87**, 920-943.
- 5. N. Amri and T. Wirth, *The Journal of Organic Chemistry*, 2021, **86**, 15961-15972.