Supporting Information

Alchemical Approach Performance in Calculating

the Ligand-Binding Free Energy

Son Tung Ngo, ${ }^{\text {ab* }}$ Quynh Mai Thai, ${ }^{\text {ab }}$ Trung Hai Nguyen, ${ }^{\text {ab }}$ Nguyen Ngoc Tuan, ${ }^{\mathrm{c}}$ T. Ngoc Han Pham, ${ }^{\text {d }}$ Huong T. T. Phung, ${ }^{\text {d }}$ and Duong Tuan Quang ${ }^{\text {e* }}$
${ }^{a}$ Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
${ }^{b}$ Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
${ }^{c}$ Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
${ }^{d}$ NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
${ }^{e}$ Department of Chemistry, Hue University, Thua Thien Hue Province, Hue City, Vietnam
*Email: ngosontung@tdtu.edu.vn and dtquang@hueuni.edu.vn

Sequence comparison between Homo sapiens and Rattus norvegicus of Glutamate Receptor, Ionotropic Kainate 1 Pairwise Alignment
Sequence 1: 2ZNS (Homo sapiens)
Sequence 2: 4DLD (Rattus norvegicus)
Sequence ends allowed to slide over each other
Alignment score: 248

Identities: 0.9766537
Similarities: 0.9766537
Similarity Matrix: MATCH

2ZNS EANRTLIVTTILEEPYVMYRKSDKPLYGNDRFEGYCLDLLKELSNILGFIYDVKLVPDGKYGAQNDKGEWNGMVKELIDH 4DLD --NRTLIVTTILEEPYVMYRKSDKPLYGNDRFEGYCLDLLKELSNILGFLYDVKLVPDGKYGAQNDKGEWNGMVKELIDH

2ZNS RADLAVAPLTITYVREKVIDFSKPFMTLGISILYRKGTPIDSADDLAKQTKIEYGAVRDGSTMTFFKKSKISTYEKMWAF
4DLD RADLAVAPLTITYVREKVIDFSKPFMTLGISILYRKGTPIDSADDLAKQTKIEYGAVRDGSTMTFFKKSKISTYEKMWAF

2ZNS MSSRQQTALVRNSDEGIQRVLTTDYALLMESTSIEYVTQRNCNLTQIGGLIDSKGYGVGTPIGSPYRDKITIAILQLQEE 4DLD MSSRQQSALVKNSDEGIQRVLTTDYALLMESTSIEYVTQRNCNLTQIGGLIDSKGYGVGTPIGSPYRDKITIAILQLQEE

2ZNS GKLHMMKEKWWRGNGC-
4DLD GKLHMMKEKWWRGNGCP

Table S1. 2D and 3D structure for all ligands of AmpC, GluK1, Hsp90 and SARS-CoV-2 Mpro systems
N ${ }^{\mathbf{N}}$ PDB ID
2R9W
9
2RSO

(3FVK

21	2QG0		
22	2QG2		
23	3K97		

27
29
31
34
37

Table S2. All-atom RMSD of AmpC + ligand and ligand in solution systems.

N ${ }^{0}$	PDB ID	Complex in Solution	Ligand in Solution
1	1XGI		
2	1XGJ		
3	2HDU		

4	2PU2		
5	2R9W		
6	2R9X		

7	3GR2		
8	4KZ3		
9	4K25		

10	40KP		

Table S3. All-atom RMSD of GluK1 + ligand and ligand in solution systems.

N^{0}	PDB ID	Complex in Solution	Ligand in Solution
1	1VSO		
2	2PBW		
3	2ZNS		

4	2ZNU		
5	3FKV		
6	3FVN		
7	3FVG		

8	3VF1		
9	4DLD		
10	4EOX		

Table S4. All-atom RMSD of Hsp90 + ligand and ligand in solution systems.

N^{0}	PDB ID	Complex in Solution	Ligand in Solution
1	2QG0		
2	2QG2		
3	3K97		

4	3NMQ		
5	3QDD		
6	3R4M		

7	4CWF		
8	4CWT		
9	4NH8		

Table S5. All-atom RMSD of SARS-CoV-2 Mpro + ligand and ligand in solution systems.

4	6XMK		
5	7B3E		
6	7181		

7	7LDL		
8	7NG3		
9	7CBT		

Figure S1. Thermodynamics diagram of FEP calculations. (A) full-interaction state of a ligand with surrounding protein and solvation; (B) full-interaction state of a ligand with surrounding solvation; (C) non-interaction state of a ligand with surrounding protein and solvation; (D) non-interaction state of a ligand with surrounding solvation.

Figure S2. SC and HB Contacts between AmpC Residues and Inhibitors. The values were computed over the interval 25-50 ns of MD simulations.

Figure S3. SC and HB Contacts between GluK1 Residues and Inhibitors. The values were computed over the interval 25-50 ns of MD simulations.

Figure S4. SC and HB Contacts between Hsp90 Residues and Inhibitors. The values were computed over the interval 25-50 ns of MD simulations.

Figure S5. SC and HB Contacts between SARS-CoV-2 Mpro Residues and Inhibitors. The values were computed over the interval 25-50 ns of MD simulations.

Table S6. Calculated versus Experimental Binding Affinities between AmpC, GluK1, Hsp90, SARS-CoV-2 Mpro and its inhibitors

N^{0}	PDB ID	PDB ID	$\Delta \boldsymbol{G}_{\text {cou }}$	$\Delta \boldsymbol{G}_{v d W}$	$\Delta \boldsymbol{G}_{F E P}$	$\Delta G_{E X P}{ }^{\text {b }}$
1	AmpC	1XGJ	-2.41	-5.10	-7.50 ± 1.74	-8.24
2	GluK1	3FV1	-21.90	-0.78	-22.68 ± 0.24	-12.77
3	Hsp90	3 K 97	-2.74	-8.66	-11.40 ± 0.91	-10.98
4	SARS-CoV-2 Mpro	6M2N	-0.67	-5.83	-6.51 ± 0.64	-8.25

The unit is $\mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$.

Table S7. All-atom RMSD of AmpC, GluK1, Hsp90, SARS-CoV-2 Mpro + ligand and ligand in solution systems.

N^{0}	PDB ID	Complex in Solution	Ligand in Solution
1	1XGJ		
2	3FV1		

3	3K97		
4	6M2N		

Figure S6. Time dependence of binding free energies for solvated complexes: (A) AmpC (1XGJ), (B) GluK1 (3FV1), Hsp90 (3K97), SARS-CoV-2 Mpro ($6 M 2 N$). The values collected in the equilibrium region were used to calculate $\Delta \mathrm{G}_{\text {fep. }}$. The error bars show the root mean square deviations.

