Synthesis of heterocyclic compounds by C-O bond catalyzed

by copper catalyzed by amide ligands

Supporting information

1. General information	1
2. General procedures for the preparation of ligands	.2
3. General procedure for copper-catalyzed 2-bromophenol coupling1	.2
4. Copies of ¹ H and ¹³ C spectra of ligands and (hetero) dibenzoxins	.7

1. General information

Reagents: All commercial materials are used as-is unless otherwise stated. THF is distilled in Na for the preparation of ligands. 1, 4-Dioxane is distilled in Na for copper catalyzed reactions.

Reactions: All reactions of copper-catalyzed C-O coupling are carried out on an open workbench and in a nitrogen atmosphere in resealable Schlenk test tubes with teflon tees. Unless otherwise indicated, the solution of solvent and reagent/reactant is transferred to the reaction tube by microinjector or plastic syringe (equipped with metal needle) under positive nitrogen pressure.

Instruments: NMR spectra was recorded on JEOL ECS-400 nuclear magnetic resonance spectrometer and calibrated using residual solvent peaks as an internal reference, gas chromatography was recorded on SCION 456C, high resolution mass experiments were operated on a commercial instrument, melting point was recorded on INESA WRS-1B. Multiplicities are recorded as: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, dd = doublet of doublets, m = multiplet.

. . .

2. General procedures for the preparation of ligands

General procedure A: To a solution of the corresponding aniline (2.0 equiv.) in THF (0.3 M) was added Et_3N (2.1 equiv.). Oxaloyl chloride (1.0 equiv.) was then slowly dripped into the mixture under an ice bath. The resulting mixture was stirred at room temperature for 2 hours, then vacuum concentrated to remove the solvent, and water was added to the resulting residue to dissolve Et_3N ·HCl. The slurry is then filtered and the solids on the filter paper are washed with water and cold ether. These solids are recrystallized, dried in a vacuum, and the corresponding N,N '-diaryloxamide is obtained. They are pure enough to be used without further purification.

General procedure B: To a solution of the corresponding aniline (1.0 equiv.) in THF (0.2M) was added Et₃N (1.2 equiv.). Mono-methyl oxalyl chloride (1.1 equiv.) was then slowly added to the solution under an ice water bath. After stirring the resulting mixture at room temperature for 2 hours, wash the mixture with the same volume of water. The organic phase is dried with Na₂SO₄ and evaporated. The crude product was purified by silica gel chromatography to obtain a light yellow solid with a yield of 89%. The obtained yellow solid was dissolved in THF (0.5M), KOH (2.0M aqueous solution, 1.0eq) was added to the mixed solution, and the obtained mixture was stirred at room temperature, and tested by TLC until it was completely consumed. Vacuum concentration removes THF and water, and oven drying produces a white solid at 98% yield.

2

. . .

The L1 was prepared as a white solid in 83% yield from aniline and oxalyl chloride following the general procedure A. M.P.: 253-254°C.¹H NMR (400 MHz, DMSO-d₆) δ 10.86 (s, 2H), 7.87 (d, J = 8.5 Hz, 4H), 7.38 (t, J = 7.9 Hz, 4H), 7.16 (t, J = 7.4 Hz, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 158.64, 137.70, 128.81, 124.67, 120.49; ESI-HRMS m/z calcd for C₁₄H₁₃N₂O₂ (M + H)⁺ 241.0950, found: 241.0955.

The L2 was prepared as a white solid in 85% yield from 2-methylaniline and oxalyl chloride following the general procedure A. M.P.: 216-217°C. ¹H NMR (400 MHz, DMSO-d₆) δ 10.30 (s, 2H), 7.50 (d, J = 7.9 Hz, 2H), 7.32 – 7.13 (m, 6H), 2.25 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 158.57, 135.09, 132.40, 130.47, 126.25, 124.97, 17.69; ESI-HRMS m/z calcd for C₁₆H₁₇N₂O₂ (M + H)⁺ 269.0965, found: 269.0963.

The L3 was prepared as a white solid in 86% yield from 2-methoxyaniline and oxalyl chloride following the general procedure A. M.P.: 275-277°C. ¹H NMR (400 MHz, DMSO-d₆) δ 10.74 (s, 2H), 7.73 (d, *J* = 8.3 Hz, 4H), 7.17 (d, *J* = 8.3 Hz, 4H), 2.28 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 158.52, 135.20, 133.73, 129.19, 120.40, 20.58; ESI-HRMS m/z calcd for C₁₆H₁₇N₂O₄ (M + H)⁺ 301.0995, found: 301.0990.

The L4 was prepared as a white solid in 82% yield from 2-fluoroaniline and oxalyl chloride following the general procedure A. M.P.: 231-232°C. ¹H NMR (400 MHz, DMSO-d₆) δ 10.56 (s, 2H), 7.67 (t, *J* = 7.8 Hz, 2H), 7.41 – 7.17 (m, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 158.30, 155.32 (d, *J* = 247.6 Hz), 127.65 (d, *J* = 7.7 Hz), 126.15 (d),

124.58 (d, J = 3.9 Hz), 124.32 (d, J = 12.0 Hz), 115.99 (d, J = 19.7 Hz); ESI-HRMS m/z calcd for C₁₄H₁₁F₂N₂O₂ (M + H)⁺ 277.0975, found: 277.0977.

The L5 was prepared as a white solid in 81% yield from 2-phenoxyaniline and oxalyl chloride following the general procedure A. M.P.: 206-207°C. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 2H), 8.36 (d, *J* = 8.0 Hz, 2H), 7.28 (s, 1H), 7.24 (s, 1H), 7.16 – 6.74 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 157.50, 156.20, 146.87, 130.12, 128.11, 125.55, 124.33, 123.89, 120.61, 119.18, 117.73; ESI-HRMS m/z calcd for C₂₆H₂₁N₂O₄ (M + H)⁺ 425. 0955, found: 425. 0957.

The L6 was prepared as a white solid in 88% yield from 4-methylaniline and oxalyl chloride following the general procedure A. M.P.: 280-281°C. ¹H NMR (400 MHz, DMSO-d₆) δ 9.97 (s, 2H), 7.76 – 6.76 (m, 8H), 3.94 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 157.56, 148.96, 129.92, 126.26, 125.38, 121.11, 119.78, 110.37, 55.91, 21.14; ESI-HRMS m/z calcd for C₁₆H₁₇N₂O₄ (M + H)⁺ 301.0945, found: 301.0943.

. . .

The L7 was prepared as a white solid in 87% yield from 4-methoxyaniline and oxalyl chloride following the general procedure A. M.P.: 268-269°C. ¹H NMR (400 MHz, DMSO-d₆) δ 10.72 (s, 2H), 7.89 – 7.64 (m, 4H), 7.07 – 6.81 (m, 4H), 3.74 (s, 6H).¹³C NMR (101 MHz, DMSO-d₆) δ 158.30, 156.14, 130.82, 121.89, 113.89; ESI-HRMS m/z calcd for C₁₆H₁₇N₂O₄ (M + H)⁺ 301.0945, found: 301.0943.

The L8 was prepared as a white solid in 89% yield from 4-fluoroaniline and oxalyl chloride following the general procedure A. M.P.: 256-258°C. ¹H NMR (400 MHz, DMSO-d₆) δ 7.89 (dd, *J* = 9.3, 5.0 Hz, 4H), 7.22 (d, *J* = 9.0 Hz, 4H).¹³C NMR (101 MHz, DMSO-d₆) δ 160.05, 158.06 (d, *J* = 81.9 Hz), 134.11 (d, *J* = 2.9 Hz), 122.38 (d, *J* = 7.7 Hz), 115.45 (d, *J* = 22.2 Hz); ESI-HRMS m/z calcd for C₁₄H₁₀F₂N₂O₂ (M + H)⁺ 277.0983, found: 277.0985.

The L9 was prepared as a white solid in 92% yield from cyclohexylamine and oxalyl chloride following the general procedure A. M.P.: 276-277°C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 9.3 Hz, 2H), 3.95 – 3.50 (m, 2H), 1.95 – 1.60 (m, 10H), 1.42 – 1.12 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 159.18, 48.88, 32.75, 25.48, 24.84; ESI-HRMS m/z calcd for C₁₄H₂₅N₂O₂ (M + H)⁺ 253.1965, found: 253.1967.

The L10 was prepared as a white solid in 91% yield from benzylamine and oxalyl chloride following the general procedure A. M.P.: 225-227°C. ¹H NMR (400 MHz, DMSO-d₆) δ 9.34 (t, *J* = 6.6 Hz, 2H), 7.28 (dq, *J* = 15.6, 8.0 Hz, 10H), 4.33 (d, *J* = 6.5 Hz, 4H).¹³C NMR (101 MHz, DMSO-d₆) δ 160.16, 138.78, 128.34, 127.40, 126.98, 42.41; ESI-HRMS m/z calcd for C₁₆H₁₇N₂O₂ (M + H)⁺ 269.0973, found: 269. 0971.

. . .

The L11 was prepared as a white solid in 90% yield from 4-flubenzylamine and oxalyl chloride following the general procedure A. M.P.: 235-237°C. ¹H NMR (400 MHz, DMSO-d₆) δ 9.36 (t, *J* = 6.5 Hz, 2H), 7.42 – 7.00 (m, 8H), 4.30 (d, *J* = 6.5 Hz, 4H).¹³C NMR

(101 MHz, DMSO-d₆) δ 162.46, 160.08 (d, *J* = 4.8 Hz), 134.98 (d, *J* = 2.9 Hz), 129.48 (d, *J* = 8.2 Hz), 115.06 (d, *J* = 21.2 Hz), 41.72; ESI-HRMS m/z calcd for C₁₆H₁₅F₂N₂O₂ (M + H)⁺ 305.0985, found: 305.0983.

The L12 was prepared as a white solid in 89% yield from 4-methoxybenzylamine and oxalyl chloride following the general procedure A. M.P.: 242-243°C. ¹H NMR (400 MHz, DMSO-d₆) δ 9.24 (t, *J* = 6.7 Hz, 2H), 7.19 (d, *J* = 8.6 Hz, 4H), 6.86 (d, *J* = 8.7 Hz, 4H), 4.24 (d, *J* = 6.5 Hz, 4H), 3.71 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 162.76, 160.01, 158.29, 139.37, 130.78, 128.83, 113.68, 41.82; ESI-HRMS m/z calcd for C₁₈H₂₁N₂O₄ (M + H)⁺ 329.0956, found: 329.0954.

The L13 was prepared as a white solid in 85% yield from 2, 6-dimethoxyaniline and oxalyl chloride following the general procedure A. M.P.: 269-270°C. ¹H NMR (400 MHz, DMSO-d₆) δ 9.54 (s, 2H), 7.27 (t, *J* = 8.4 Hz, 2H), 6.73 (d, *J* = 8.5 Hz, 4H), 3.77 (s, 12H).¹³C NMR (101 MHz, DMSO-d₆) δ 158.66, 155.81, 128.24, 113.33, 104.40 (d, *J* = 33.2 Hz), 55.75;ESI-HRMS m/z calcd for C₁₈H₂₁N₂O₆ (M + H)⁺ 361.0987, found: 361.0988.

. . .

The L14 was prepared as a white solid in 84% yield from 2,4,6-trimethylaniline and oxalyl chloride following the general procedure A. M.P.: 288-291°C. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 2H), 6.94 (s, 4H), 2.27 (d, *J* = 25.7 Hz, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 158.40, 137.76, 134.82, 129.79, 129.24, 21.09, 18.48; ESI-HRMS m/z calcd for C₂₀H₂₅N₂O₂ (M + H)⁺ 325.1968, found: 325.1969.

The L15 was prepared as a light yellow solid in 92% yield from 1, 2phenylenediamine, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 311-314°C. ¹H NMR (400 MHz, D₂O) δ 7.46 (dd, *J* = 6.1, 3.5 Hz, 2H), 7.28 (dd, *J* = 6.1, 3.5 Hz, 2H). ¹³C NMR (101 MHz, D₂O) δ 165.45, 163.70, 129.83, 127.59, 125.81; ESI-HRMS m/z calcd for C₁₀H₆N₂O₆(M - K)⁻ 249.989, found: 249.992.

The L16 was prepared as a light yellow solid in 90% yield from aniline, monomethyl oxalyl chloride and KOH following the general procedure B. M.P.: >324°C. ¹H NMR (400 MHz, D₂O) δ 7.44 – 7.27 (m, 4H), 7.15 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (101 MHz, D₂O) δ 166.12, 163.29, 136.25, 129.23, 126.05, 121.92; ESI-HRMS m/z calcd for C₈H₆NO₃ (M - K)⁻ 163.985, found: 163.982.

The L17 was prepared as a light yellow solid in 89% yield from 2-methylaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 271-273°C.¹H NMR (400 MHz, D₂O) δ 7.30 – 7.13 (m, 4H), 2.13 (s, 3H). ¹³C NMR (101 MHz, D₂O) δ 166.08, 164.13, 133.99, 130.78, 127.58, 126.68, 125.80, 16.84; ESI-HRMS m/z calcd for C₉H₈NO₃ (M - K)⁻ 178.0765, found: 178.0768.

. . .

The L18 was prepared as a light yellow solid in 86% yield from 2-methoxyaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: >324°C. ¹H NMR (400 MHz, D₂O) δ 7.68 (dd, J = 7.9, 2.2 Hz, 1H), 7.21 – 7.04 (m, 1H), 7.06 – 6.81 (m, 2H), 3.76 (d, *J* = 4.6 Hz, 3H). ¹³C NMR (101 MHz, D₂O) δ 165.73, 162.68, 150.55, 127.01, 125.08, 122.39, 121.05, 111.92, 55.92; ESI-HRMS m/z calcd for $C_9H_8NO_4$ (M - K)⁻ 193.975, found: 193.977.

The L19 was prepared as a light yellow solid in 83% yield from 2-fluoroaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 295-296°C. ¹H NMR (400 MHz, D₂O) δ 7.56 (td, *J* = 7.7, 1.7 Hz, 1H), 7.32 – 6.98 (m, 3H). ¹³C NMR (101 MHz, D₂O) δ 164.59 (d, *J* = 185.4 Hz), 155.09 (d, *J* = 244.7 Hz), 149.91, 134.87, 124.41 (d, *J* = 154.6 Hz). ESI-HRMS m/z calcd for C₈H₅FNO₃ (M - K)⁻ 181.953, found: 181.956.

The L20 was prepared as a light yellow solid in 82% yield from 2-phenoxyaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 250-253°C.¹H NMR (400 MHz, D₂O) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.03 (t, *J* = 7.9 Hz, 2H), 6.92 (t, *J* = 7.8 Hz, 1H), 6.84 (t, *J* = 7.4 Hz, 1H), 6.78 (t, *J* = 7.8 Hz, 1H), 6.66 (d, *J* = 8.2 Hz, 2H), 6.54 (d, *J* = 8.1 Hz, 1H). ¹³C NMR (101 MHz, D₂O) δ 165.10, 162.39, 156.27, 147.41, 130.14, 129.82, 127.76, 126.39, 124.39, 123.94, 122.89, 118.05, 117.47; ESI-HRMS m/z calcd for C₁₄H₁₀NO₄ (M - K)⁻ 256.0987, found: 256.0983.

The L21 was prepared as a light yellow solid in 89% yield from 4-methylaniline, mono-methyl oxalyl chloride and KOH following the general procedure B.¹H NMR (400 MHz, D₂O) δ 7.27 (dd, *J* = 8.3, 3.2 Hz, 2H), 7.14 (dd, *J* = 8.6, 3.0 Hz, 2H), 2.20 (d, *J* = 3.2 Hz, 3H). ¹³C NMR (101 MHz, D₂O) δ 166.18, 163.18, 136.17, 133.62, 129.69, 121.96, 20.10; ESI-HRMS m/z calcd for C₉H₈NO₃ (M - K)⁻ 178.0989, found: 178.1.0986.

The L22 was prepared as a light yellow solid in 81% yield from 4-methoxyaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 307-310°C .¹H NMR (400 MHz, D₂O) δ 7.30 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 9.1 Hz, 2H), 3.70 (s, 3H). ¹³C NMR (101 MHz, D₂O) δ 166.18, 163.23, 156.70, 129.57, 123.86, 114.45, 55.52; ESI-HRMS m/z calcd for C₉H₈NO₄ (M - K)⁻ 193.973, found: 193.975.

The L23 was prepared as a light yellow solid in 88% yield from 4-fluoroaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: >324°C. ¹H NMR (400 MHz, D₂O) δ 7.66 – 7.27 (m, 2H), 7.10 (dt, *J* = 49.9, 8.9 Hz, 2H). ¹³C NMR (101 MHz, D₂O) δ 174.55, 165.61, 132.22, 125.01 (d, *J* = 171.6 Hz), 114.73 (d, *J* = 212.9 Hz); ESI-HRMS m/z calcd for C₈H₅FNO₃ (M - K)⁻ 181.964, found: 181.971.

The L24 was prepared as a light yellow solid in 92% yield from cyclohexylamine, mono-methyl oxalyl chloride and KOH following the general procedure B.M.P.: 252-257°C. ¹H NMR (400 MHz, D₂O) δ 3.47 (t, *J* = 10.5 Hz, 1H), 1.84 – 1.36 (m, 5H), 1.29 – 1.01 (m, 5H).¹³C NMR (101 MHz, D₂O) δ 166.22, 165.24, 163.09, 160.68, 133.44, 129.11, 115.39, 42.37; ESI-HRMS m/z calcd for C₈H₁₂NO₃ (M - K)⁻ 170.0948, found: 170.0946.

. . .

The L25 was prepared as a light yellow solid in 90% yield from benzylamine, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 251-256°C. ¹H NMR (400 MHz, D_2O) δ 7.41 – 7.07 (m, 5H), 4.31 (s, 2H). ¹³C NMR (101 MHz,

 D_2O) δ 166.23, 165.24, 137.63, 127.34, 127.00, 42.96; ESI-HRMS m/z calcd for $C_9H_8NO_3$ (M - K)⁻ 178.0965, found: 178.0963.

The L26 was prepared as a light yellow solid in 89% yield from 4-flubenzylamine, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 263-267°C. ¹H NMR (400 MHz, D₂O) δ 7.45 – 7.04 (m, 4H), 4.31 (s, 2H). ¹³C NMR (101 MHz, D₂O) δ 166.23, 165.24, 137.63, 128.64 (d, *J* = 599.0 Hz), 127.17 (d, *J* = 34.2 Hz), 42.96; ESI-HRMS m/z calcd for C₉H₇FNO₃ (M - K)⁻ 195.8673, found: 195.8671.

The L27 was prepared as a light yellow solid in 93% yield from 4methoxybenzylamine, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 273-276°C. ¹H NMR (400 MHz, D₂O) δ 7.17 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 4.25 (s, 2H), 3.70 (s, 3H). ¹³C NMR (101 MHz, D₂O) δ 166.30, 165.13, 158.12, 130.32, 128.96, 128.67, 114.30, 114.14, 55.33, 42.42; ESI-HRMS m/z calcd for C₁₀H₁₀NO₄ (M - K)⁻ 208.0973, found: 208.0966.

. . .

The L28 was prepared as a light yellow solid in 85% yield from 2, 6dimethoxyaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 152-156°C.¹H NMR (400 MHz, D₂O) δ 7.24 (t, *J* = 8.5 Hz, 1H), 6.67 (d, *J* = 8.6 Hz, 2H), 3.70 (s, 6H). ¹³C NMR (101 MHz, D₂O) δ 165.66, 164.57, 155.28, 129.61, 129.32, 112.29, 105.77, 104.58, 56.22; ESI-HRMS m/z calcd for C₁₀H₁₀NO₅ (M - K)⁻ 224.0967, found: 224.0957.

The L29 was prepared as a light yellow solid in 86% yield from 2,4,6trimethylaniline, mono-methyl oxalyl chloride and KOH following the general procedure B. M.P.: 289-292°C. ¹H NMR (400 MHz, D₂O) δ 6.90 (s, 2H), 2.15 (s, 3H), 2.01 (s, 6H). ¹³C NMR (101 MHz, D₂O) δ 166.15, 164.73, 138.33, 135.67, 130.12, 128.72, 128.58, 20.06, 17.10; ESI-HRMS m/z calcd for C₁₁H₁₂NO₃ (M - K)⁻ 206.0668, found: 206.0671.

3. General procedure for copper-catalyzed 2-bromophenol coupling

The 2-bromophenol (2.0mmol),CuCl (0.1mmol,10.1mg),K₃PO₄ (3.0mmol, 643.7mg) and ligand L15 (0.2mmol,65.9mg) were placed into a Schlenk tube (25mL) with a magnetic stirring rod. Evacuate the reaction vessel and backfill with nitrogen, cycle three times, then add 1,4-dioxane (3.0mL) (note: for liquid substances, they are added after backfilling the tube with nitrogen). Under intense agitation, the reaction mixture is heated at 125°C for 24 hours. The cooled solution was diluted with ethyl acetate, concentrated in vacuum, and purified by silica gel chromatography to obtain the corresponding cyclic diether.

As shown in Table 1, we selected L17/L28 with medium performance and copper salt to catalyze the coupling of 2-bromophenol as a model reaction to screen the best copper salt, alkali and solvent. It was found that the coupling effect of CuCl as a catalyst was better than that of Cul (items 1-8). When K₃PO₄ was used to provide an alkaline environment, the coupling effect of 2-bromophenol was the best (items 9-16). After a series of solvents were tried, it was found that 1,4-dioxane showed outstanding advantages as a solvent (items 10-20). In order to further explore the best 2bromophenol coupling reaction conditions, we summarized the previous research results and carried out a complete condition optimization experiment. The coupling reactions under different temperatures, different reaction times, different catalyst dosages and different ligand inputs were compared. It was found that 125°C was the most suitable reaction temperature (compared with items 32,34,35). The effect of L15 with CuCl catalytic system was the most prominent (compared with items 27-32), the conversion rate could reach 85%, and the separation yield reached 82%. It was found that the conversion rate did not increase with the longer reaction time (compare items 32-33). The use of copper salt is 10mol% (comparison items 32-36), and the best effect is 20mol% of amide ligand (comparison items 37-38).

12

	2 1a	OH 10 mol%[20 mol%Lig base,solv Br 90-140°C,24-	Cu] gand rent 48h,N ₂	0 O 2a	
entry ^a	ligand	catalyst	base	solvent	yield(%) ^b
1	L28	CuCl	K ₃ PO ₄	1,4-dixoane	71
2	L28	CuBr	K ₃ PO ₄	1,4-dixoane	58
3	L28	CuO	K ₃ PO ₄	1,4-dixoane	45
4	L28	CuC ₂ O ₄	K ₃ PO ₄	1,4-dixoane	55
5	L28	Cu ₂ O	K_3PO_4	1,4-dixoane	45
6	L28	Cu(OAc) ₂	K ₃ PO ₄	1,4-dixoane	61
7	L28	Cu(OTf) ₂	K ₃ PO ₄	1,4-dixoane	49
8	L28	Cu(acac) ₂	K ₃ PO ₄	1,4-dixoane	55
9	L28	Cul	K ₂ CO ₃	1,4-dixoane	49
10	L28	Cul	КОН	1,4-dixoane	37
11	L28	Cul	NaOH	1,4-dixoane	35
12	L28	Cul	KOAc	1,4-dixoane	10
13	L28	Cul	Cs ₂ CO ₃	1,4-dixoane	38
14	L28	Cul	Cs_2WO_4	1,4-dixoane	23
15	L28	Cul	CsF	1,4-dixoane	30
16	L28	Cul	KO ^t Bu	1,4-dixoane	41
17	L17	Cul	K ₃ PO ₄	DMSO	13
18	L17	Cul	K ₃ PO ₄	DMF	10
19	L17	Cul	K_3PO_4	CH₃CN	32
20	L17	Cul	K ₃ PO ₄	DMC	38
21	L17	Cul	K ₃ PO ₄	DEC	35
22	L17	Cul	K ₃ PO ₄	CH₃COOH	39
23	L17	Cul	K ₃ PO ₄	Toluene	50
24	L17	Cul	K ₃ PO ₄	Xylene	29
25	L17	Cul	K ₃ PO ₄	EtOH	38

Table 1 Coupling of 1a catalyzed by Cu salt under different reaction conditions

26	L15	Cul	K_3PO_4	H ₂ O	0
27	L17	Cul	K ₃ PO ₄	1,4-dixoane	59
28	L28	Cul	K ₃ PO ₄	1,4-dixoane	66
29	L15	Cul	K ₃ PO ₄	1,4-dixoane	70
30	L17	CuCl	K ₃ PO ₄	1,4-dixoane	68
31	L28	CuCl	K ₃ PO ₄	1,4-dixoane	68
32	L15	CuCl	K ₃ PO ₄	1,4-dixoane	85 ^k
33 ^c	L15	CuCl	K ₃ PO ₄	1,4-dixoane	79
34 ^d	L15	CuCl	K ₃ PO ₄	1,4-dixoane	30-67
35 ^e	L15	CuCl	K ₃ PO ₄	1,4-dixoane	78
36 ^f	L15	CuCl	K ₃ PO ₄	1,4-dixoane	79
37 ^g	L15	CuCl	K ₃ PO ₄	1,4-dixoane	84
38 ^h	L15	CuCl	K ₃ PO ₄	1,4-dixoane	76
39 ⁱ	L15	CuCl	K ₃ PO ₄	1,4-dixoane	0
40 ^j	L15	CuCl	K ₃ PO ₄	1,4-dixoane	5
41 ¹	L15	CuCl	K ₃ PO ₄	1,4-dixoane	10
42	L15	CuCl	none	1,4-dixoane	10

^ageneral situation is as follows : 1a (2.0mmol), copper salt (0.1mmol), ligand (0.2mmol), base (3.0mmol), solvent (3.0mL), in N₂ atmosphere, reaction 24h. ^b Using n-decane as an internal standard, ^c reaction 48h, ^d reaction temperature: 50-90°C, ^e reaction temperature:140°C, ^f L15 (0.4mmol), ^g CuCl (0.2mmol), ^h CuCl (0.05mmol), ⁱ no copper salt, ^j no ligand, ^k separation yield of 82%,¹air instead of N₂.

2a:White powder (150.9mg,82%) , M.P.: 120-121°C. ¹H NMR (400 MHz, CDCl₃) δ 6.95 – 6.78 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 142.36, 123.94, 116.51; ESI-HRMS m/z calcd for $C_{12}H_8O_2$ (M + H)⁺ 185.0967, found: 185. 0967.

2b(2c):White powder (2b:156.9mg,74%;2c:161.1mg,76%) , M.P.: 164-165°C. ¹H NMR (400 MHz, CDCl₃) δ 6.91 – 6.49 (m, 6H), 2.24 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.38, 140.60, 126.02, 125.42, 122.80, 114.05, 15.25; ESI-HRMS m/z calcd for $C_{14}H_{12}O_2$ (M + H)⁺ 213.0977, found: 213.0983.

2d(2e): White powder (2d:169.6mg,80%;2e:171.8mg,81%) , M.P.: 108-112°C .¹H NMR (400 MHz, CDCl₃) δ 6.81 – 6.58 (m, 6H), 2.24 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 142.03, 140.03, 133.67, 123.99, 116.94, 116.05, 20.83; ESI-HRMS m/z calcd for C₁₄H₁₂O₂ (M + H)⁺ 213.0867, found: 213.0871.

. . .

2f(2g): White powder (2f:162.8mg,74%;2g:167.2mg,76%) , M.P.: 145-146°C. ¹H NMR (400 MHz, CDCl₃) δ 6.78 (d, J = 4.1 Hz, 2H), 6.59 (dd, J = 8.2, 4.6 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 158.83 (d, J = 242.5 Hz), 142.50 (d, J = 12.3 Hz), 137.68 (d, J = 3.2 Hz), 116.84 (d, J = 9.5 Hz), 110.11 (d, J = 23.2 Hz), 104.42 (d, J = 27.5 Hz); ESI-HRMS m/z calcd for C₁₂H₆F₂O₂ (M + H)⁺ 220.781, found: 220.784.

2h(2i): White powder (2h:187.9mg,77%;2i:183.1mg,75%) , M.P.: 139-140°C. ¹H NMR (400 MHz, CDCl₃) δ 6.76 (d, *J* = 12.0 Hz, 2H), 6.43 (s, 4H), 3.75 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 156.13, 142.82, 135.75, 116.54, 108.31, 102.60, 55.84; ESI-HRMS m/z calcd for $C_{14}H_{12}O_4$ (M + H)⁺ 245.0784, found: 245.0789.

2j(2k): White powder (2j:186.5mg,74%;2k:183.9mg,73%) , M.P.: 159-160°C. ¹H NMR (400 MHz, CDCl₃) δ 6.87 (dd, *J* = 10.8, 2.3 Hz, 4H), 6.77 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.37, 140.46, 128.87, 124.04, 117.37, 116.95; ESI-HRMS m/z calcd for C₁₂H₆Cl₂O₂ (M + H)⁺ 252.8782, found: 252.8774.

2n: White powder (162.1mg,75%) , M.P.: 89-92°C. ¹H NMR (400 MHz, CDCl₃) δ 7.00 (s, 4H), 6.81 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 136.24, 133.06, 128.34, 128.05, 127.02, 121.15. ESI-HRMS m/z calcd for C₁₂H₈S₂ (M + H) ⁺ 216.9867, found: 216.9865.

4. Copies of ¹H and ¹³C spectra of ligands and (hetero) dibenzoxins

•••

•••

•••

•••

•••

•••

•••

