Supporting Information

Exploitation of multitarget role of new ferulic and gallic acid derivatives in oxidative stress-related Alzheimer's disease Therapies: Design, synthesis and bioevaluation

Fahad Hussain^a, Ayesha Tahir^a, Muhammad Saeed Jan^b, Noor Fatima^a, Abdul

Sadiq ^c, and Umer Rashid *^a

- ^a Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
- ^b Department of Pharmacy, Bacha Khan University, 24420, Charsadda, KPK, Pakistan.
- ^c Department of Pharmacy, University of Malakand, 18000 Chakdara, KP, Pakistan.

Corresponding author: E-mail: umerrashid@cuiatd.edu.pk

Figure S-1: (a) Shape and binding pocket volume of MAO-B (2V5Z) generated *via* Computed Atlas of Surface Topography of proteins (CASTp) online server (b) 3D modelled ribbon diagram with co-crystalized ligand (surface diagram) obtained via MOE software

Figure S-2: Shape and binding pocket of MAO-B (2V5Z) with co-crystalized ligand safinamide (Surface diagram) generated *via* MOE

Figure S-3: (a) Shape and binding pocket volume of *Tc*AChE (1EVE) generated *via* CASTp online server (b) 3D modelled ribbon diagram with co-crystalized ligand (surface diagram) obtained via MOE software

Figure S-4: Shape and binding pocket of *Tc*AChE (1EVE) with co-crystalized ligand donepezil (Surface diagram) generated *via* MOE

Figure S-5: Dose-response curve of synthesized compounds obtained from the percent ABTS scavenging effect and concentration values.

Figure S-6: Dose-response curve of synthesized compounds obtained from the percent DPPH scavenging effect and concentration values.

Figure S-7: Dose–response effect of inhibitors (23, 28) and standard drug curcumin) from ThT assay on A β aggregation.

Figure S-8: 2D interaction plot of standard drug donepezil in the binding site of AChE (1EVE) modelled by using Discovery Studio visualizer

Figure S-9: 2D interaction plot of standard drug Celecoxib in the binding site of COX-2 (1CX2) modelled by using Discovery Studio visualizer

Figure S-10: ¹H NMR (400 MHz) spectrum of compound 18 in DMSO-*d*₆

Figure S-11: ¹³C NMR (100 MHz) spectrum of compound 18 in DMSO-d₆

Figure S-12: HPLC Chromatogram of compound 18

Figure S-13: ¹H NMR (400 MHz) spectrum of compound 19 in DMSO-d₆

Figure S-14: ¹³C NMR (100 MHz) spectrum of compound 19 in DMSO-d₆

Figure S-15: HPLC Chromatogram of compound 19

Figure S-16: ¹H NMR (400 MHz) spectrum of compound **20** in DMSO-*d*₆

Figure S-17: ¹³C NMR (100 MHz) spectrum of compound **20** in DMSO-*d*₆

Figure S-18: HPLC Chromatogram of compound 20

Figure S-19: ¹H NMR (400 MHz) spectrum of compound 22 in DMSO-d₆

Figure S-20: ¹³C NMR (100 MHz) spectrum of compound 22 in DMSO-d₆

Figure S-23: HPLC Chromatogram of compound 23

Figure S-24: LC-MS Chromatogram of compound 23

Figure S-25: ¹H NMR (400 MHz) spectrum of compound 24 in DMSO-d₆

Figure S-26: ¹³C NMR (100 MHz) spectrum of compound 24 in DMSO-d₆

Figure S-27: ¹H NMR (400 MHz) spectrum of compound 25 in DMSO-d₆

Figure S-31: ¹H NMR (400 MHz) spectrum of compound 26 in DMSO-d₆

Figure S-32: ¹³C NMR (100 MHz) spectrum of compound 26 in DMSO-d₆

Figure S-34: LC-MS Chromatogram of compound 26

Figure S-35: ¹H NMR (400 MHz) spectrum of compound 27 in DMSO-*d*₆

Figure S-36: ¹³C NMR (100 MHz) spectrum of compound 27 in DMSO-d₆

Figure S-37: ¹H NMR (400 MHz) spectrum of compound **28** in DMSO-*d*₆

Figure S-38: ¹³C NMR (100 MHz) spectrum of compound 28 in DMSO

Figure S-39: HPLC Chromatogram of compound 28

Figure S-40: LC-MS Chromatogram of compound 28

Figure S-41: ¹H NMR (400 MHz) spectrum of compound **29** in DMSO-*d*₆

Figure S-42: ¹³C NMR (100 MHz) spectrum of compound 29 in DMSO-d₆

Figure S-43: HPLC Chromatogram of compound 29