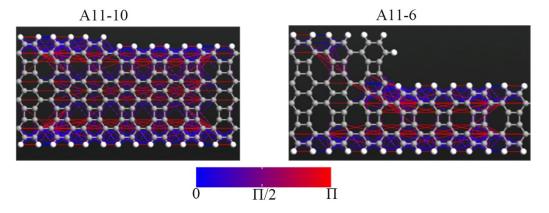
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

First-principles study on the electronic properties of biphenylene, net-graphene, graphene+, and T-graphene based nanoribbons


Wensheng Zhou^{a,†}, Cheng Luo^{a,†}, Yun Chao^{a,b*}, Songbo Xiong^a, Menegqiu Long^c, Tong Chen^{a,b*}

- a. Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, PR Chinab. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, PR China
- c. Hunan Key laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha 410083, China


 $\dagger.$ Wensheng Zhou and Cheng Lou contributed equally to this work.

E-mail addresses: 279916153@qq.com(Y. Chao); chentong@jxust.edu.cn (T. Chen)

Supplementary material

Figure. S1 (a) - (d) Phonon spectra of biphenylene, net-graphene, graphene+, and T-graphene, respectively.

Figure. S2. Transmission paths of A11-10 and A11-6 nanodevices under 0 bias voltage. The color bar displays from 0 (blue) to π The data in red.