Enhanced reduction of COD in water associated with natural gas production using iron-based nanoparticles

Moataz Elsaeed Selim^[a], Magdi E Khalifa^[a], Fawaz A Agizah^[b], Eman M. Mostafa^[c], and Fathi S. Awad^{[a,d] *}

^[a] Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. ^[b] Rashid Petroleum Company, Cairo, Egypt.

^[c] Production department, Egyptian Petroleum Research Institute, Cairo, Egypt.

^[d] Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura City, 35712, Egypt.

Supporting Information

Figure S1: EDX analysis of iron oxide (FO) (A), and iron zinc oxide (FZO) (B).

Reso

Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Pro Det

Figure S2: DLS analysis of iron oxide (FO) (A), and iron zinc oxide (FZO) (B).

Figure S3: Zeta potential analysis of iron oxide (FO) (A), and iron zinc oxide (FZO) (B).

Table S1: The effect of pH upon %COD reduction at differ	rent dosage (1	.5 g/L, 3 g/L,
4.5 g/L) of nanoparticles.		

		<u>pH (3)</u>		<u>pH (4)</u>		<u>pH_(6)</u>		<u>pH_(8)</u>		<u>pH (10)</u>	
Dose (g/l)	Samples	COD	Removal	COD	Removal	COD	Removal	COD	Removal	COD	Removal
		(ppm)	%	(ppm)	%	(ppm)	%	(ppm)	%	(ppm)	%
Blank		3,547		3,547		4,732		3,547			
	<u>F0</u>	3,208	9.55	3,168	10.69	4,118	12.97	3,068	13.51	3,049	14.04
1.5 g/l	<u>FZO</u>	3,217	9.30	3,077	13.24	3,986	21.13	2,921	17.66	3,044	14.18
	<u>FVO</u>	3,509	1.07	3,006	15.25	3,448	27.14	2,899	18.27	3,213	9.40
Blank		3,547 3,547		547	4,732		3,547				
	<u>F0</u>	2,865	19.23	2,820	20.50	3,497	26.10	2,601	26.66	2,582	27.20
3 g/l	<u>FZO</u>	2,909	17.99	2,756	22.29	3,047	35.61	2,694	24.06	2,936	17.23
	<u>FVO</u>	2,878	18.86	2,621	26.10	2,736	42.18	2,409	32.07	2,768	21.96
Blank		3,5	547	3,	547	4,7	732 3,		3,5	547	
4.5 g/l	<u>F0</u>	2,686	24.27	2,742	22.70	3,719	19.70	2,698	23.92	2,549	28.13
	<u>FZO</u>	2,532	28.62	2,449	30.95	3,270	30.89	2,328	34.36	2,374	33.10
	FVO	2,831	20.19	2,641	25.53	3,816	19.35	2,683	24.35	2,506	29.34

Dose (g/L)	Commler	<u>pH (6)</u>				
	Samples	COD (ppm)	Removal %			
	Blank	4,732				
1.5	FO	4,118	12.97			
	<u>FZO</u>	3,986	21.13			
	<u>FVO</u>	3,448	27.14			
	Blank	4,732				
	FO	3,497	26.10			
3	<u>FZO</u>	3,047	35.61			
	<u>FVO</u>	2,736	42.18			
	Blank	4,732				
4.5	<u>FO</u>	3,719	19.70			
	FZO	3,270	30.89			
	<u>FVO</u>	3,816	19.35			

Table S2: The effect of nanomaterials dosage (1.5, 3, 4.5 g/L) upon %COD reduction at pH 6.

Table S3: The effect of temperatures (25 °C, 30°C, 40°C, 50°C and 60 °C) upon %COD reduction at dose (3 g/L) of nanomaterials

Dose (g/l)	Samples	<u>25 °C</u>		<u>30 °C</u>		<u>40 °C</u>		<u>50 °C</u>		<u>60 °C</u>	
		COD (ppm)	Removal %								
Blank	4,	732	3,547								
	<u>F0</u>	3,497	26.10	2,784	22.06	2,825	20.36	2,847	19.73	3,062	13.67
3 g/l	<u>FZO</u>	3,047	35.61	2,610	26.41	2,929	17.42	2,997	15.51	3,107	12.40
	<u>FVO</u>	2,736	42.18	2,366	33.29	2,997	15.50	3,109	12.35	3,221	9.19

Materials	Substance (RedOxy)	Substance (Oxy)
Dosage (g/L)	Removal %	Removal %
Blank		4,732
1.5	<u>0</u>	<u>0</u>
3.0	<u>0</u>	<u>0</u>
4.5	<u>0</u>	<u>0</u>
100.0	<u>15.17</u>	<u>0</u>
200.0	<u>22.66</u>	<u>0</u>
300.0	<u>22.12</u>	<u>0</u>

Table S4: The effect of different commercial products upon %COD reduction at doses (1.5, 3.0, 4.5, 100.0, 200.0, 300 g/L)

Table S5: The components of oilfield water											
Analysis	unit	Results	Analysis	unit	Results	Constituents	unit	Results	Constituents	unit	Results
TDS		20655			13.2 % organic	Lithium		0.41	Fluoride		53 77
105		50055	155 110170		86.7 % inorganic			0.41			55.77
Salinity		28723	Density	(mg/l)	1.01139	Sodium		10480.2	Chloride		17407.86
Alkalinity		417.8	SP Gr		1.01239	Ammonium		169.12	Bromide		195.98
Total hardness		2327.5	РН		6	Potassium	(mg/l)	179.92	Nitrate	(mg/l)	97.45
DO		3.68	Conductivity	(mohs/cm) (ohm-m)	4.6 x 10 ⁻²	Magnesium		229.7	Nitrite		Nil
BOD		346.4	Resistivity		0.2174	Calcium		553.29	Phosphate		Nil
TSS	(mg/l)	65.34	COD		4732	Strontium		13.28	Sulfate		703.38
Total BTX		11.209	Toluene		3.429	Barium		2.71	Hydroxide		Nil
Benzene		5.22	Xylenes	(mg/l)	0.55	Iron		29.9	Carbonate		Nil
Ethyl Benzene		0.63	p, m-xylene		1.38	Cupper		0.06	Bicarbonate		509.55
Oil Content		15.5									

Figure S4: The ICSD of compounds existed in FO nanomaterials

Figure S5: The ICSD of compounds existed in FZO nanomaterials

Figure S6: The ICSD of compounds existed in FZO nanomaterials