Supporting Information

Fabrication of bulk superhydrophobic wood by grafting porous poly(divinylbenzene) to wood structure using isocyanatoethyl methacrylate

Xinyu Fang^a, Ruijia Liao^a, Kaiji Wang^b, Miao Zheng^a, Hongji Li^a, Rui Wang^a, Xiaorong Liu^a, Youming Dong^a, Kaili Wang^{a*}, Jianzhang Li^{a, c*}

^aCo-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China..

^bTengzhou Tostar Power Electronic Engineering Co. Ltd, Zaozhuang 277000, China.

^cMOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, China.

Specimen	Method	CA (°)	RA (°)	Abrasion resistance	Bulk or	Ref.
					coating	
Chinese	SiO ₂ NPs modified	154	0	From 155° decreased	Coating	1
fir	by VTES			to 151° with the		
				sandpaper abrasion		
				length of 1.2 m		
Chinese	Alkali-driven SiO ₂	157	2	From 157° decreased	Coating	2
fir	NPs modified by			to 150° with the		
	VTES			sandpaper abrasion		
				length of 270 cm		
Larch	Hydrothermal pre-	160	4	From 160° decreased	Coating	3
wood	treatment and			to 140° with the		
	deposit ZnO			sandpaper abrasion		
	nanostructures			length of 50 cm		
Masson	Hierarchical	153	-	From 153° decreased	Coating	4
pine	core/shell structures			to 100° with the		
wood	fabricated by Cu ₂ O			sandpaper abrasion		
	NPs, PF resin, and			length of 100 cm		
	stearic acid					
Radiata	ZIF-8/paraffin with	153	-	From 153° decreased	Coating	5
pine	Hexadecyltrimetho			to 150° with the		
wood	xysilane			sandpaper abrasion		
				length of 100 cm		
Pinus	Epoxy/Cu ₂ (OH) ₃ Cl	157	9	From 157° decreased	Coating	6
wood	NPs/stearic acid			to 130° with the		
				sandpaper abrasion		

Table S1. The comparison of superhydrophobic wood in this work and previous studies.

				length of 400 cm		
Poplar	Liquid-vapor phase	153	6	From 153° decreased	Coating	7
wood	deposition of			to 150° with the		
	methyltrimethoxysil			sandpaper abrasion		
	ane			length of 100 cm		
Radiata	Grafting	138	-	137° in internal	Bulk	8
pine	long-chain stearoyl			surface	highly	
wood	chloride				hydroph	
					obic	
Poplar	ZnO rods modified	155	3	151° in internal	Bulk	9
wood	by palmitoyl			surface	superhyd	
	chloride				rophobic	
Poplar	Porous PDVB	156	3	151° in internal	Bulk	This
wood				surface	superhyd	work
					rophobic	

- Jia S, Liu M, Wu Y, et al. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES. Applied Surface Science, 2016, 386: 115-124.
- Jia S, Chen H, Luo S, et al. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Applied Surface Science, 2018, 455: 115-122.
- Xu L, Zhang H, Zheng C, et al. Enhancing the durability of reversible wettability on larch wood surfaces through optimized pretreatment methods. Industrial Crops and Products, 2024, 209: 118045.
- Zhan K, Lu Q, Xia S, et al. A cost effective strategy to fabricate STA@PF@Cu₂O hierarchical structure on wood surface: Aimed at superhydrophobic modification. Wood Science and Technology, 2021, 55: 565-583.
- 5. Cao S, Cheng S, Wang P, et al. Construction and characterization of superhydrophobic wood

coatings using one-step technique. Colloid and Interface Science Communications, 2023, 57: 100757.

- Lu Q, Cheng R, Jiang H, et al. Superhydrophobic wood fabricated by epoxy/Cu₂ (OH)₃Cl NPs/stearic acid with performance of desirable self-cleaning, anti-mold, dimensional stability, mechanical and chemical durability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 129162.
- Tang W, Jian Y, Shao M, et al. A novel two-step strategy to construct multifunctional superhydrophobic wood by liquid-vapor phase deposition of methyltrimethoxysilane for improving moisture resistance, anti-corrosion and mechanical strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666: 131314.
- Wang K, Dong Y, Yan Y, et al. Preparation of mechanical abrasion and corrosion resistant bulk highly hydrophobic material based on 3-D wood template. RSC advances, 2016, 6(100): 98248-98256.
- Tan Y, Wang K, Dong Y, et al. Bulk superhydrophobility of wood via in-situ deposition of ZnO rods in wood structure. Surface and Coatings Technology, 2020, 383: 125240.

Fig. S1. (a) N₂ adsorption and desorption isotherms of PDVB wood and IEMA-PDVB wood; (b) Pore width distributions of PDVB wood and IEMA-PDVB wood.