Supporting Information

Rational synthesis of 3D coral-like $ZnCo_2O_4$ nanoclusters with

abundant oxygen vacancies for high-performance supercapacitors

Yanlei Bi, ^a Huiqing Fan, ^{a*} Chuansen Hu, ^a Ru Wang, ^a Lujie Niu, ^a Guangwu Wen,^b and Luchang Qin^c

^a School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China

^b School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China

^c Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA

	Ni foam	Ni foam	Ni foam	Ni foam	
	pure	after	after	after	
		hydrothermal reaction	calcination	NaBH ₄ reduction	
Mass(mg)	178.81	181.80	181.22	180.97	

Table S1 Weight variations of Ni foam after different treatments during experiment.

Fig.S1. X-ray diffraction pattern and the Rietveld refinement results of ZnCo₂O₄

S2. X-ray diffraction pattern and the Rietveld refinement result of (a) ZnCo₂O₄-0.3, (b) ZnCo₂O₄-0.5, (c) ZnCo₂O₄-0.8, and (d) ZnCo₂O₄-1.0.

Fig.

Sample	Zn:Co:O	R _p	п	р	Ch:)	Relative
			к _{wp}	K _{exp}		crystallinity
ZnCo ₂ O ₄	1:2:3.90	1.07	1.34	1.93	0.482	57.24 %
ZnCo ₂ O ₄ -0.3	1:2:3.81	1.11	1.39	2.03	0.469	52.61 %
ZnCo ₂ O ₄ -0.5	1:2:3.66	1.11	1.41	2.04	0.473	50.70 %
ZnCo ₂ O ₄ -0.8	1:2:3.52	1.08	1.36	2.00	0.466	49.59 %
ZnCo ₂ O ₄ -1.0	1:2:3.36	1.12	1.40	1.98	0.498	44.86 %

Table S2 The refined lattice parameters of ZnCo₂O₄ and OV-ZnCo₂O₄.

The relative crystallinity of $ZnCo_2O_4$ and $OV-ZnCo_2O_4$ was calculated by the following formula[1, 2]:

$$\varepsilon = \frac{I_{\rm c}}{I_{\rm c} + I_a} \times 100\% \tag{1}$$

where ε is the relative crystallinity, I_c is the integral strength of crystallization peaks, and I_a is the integral strength of amorphous peaks.

Fig. S3. (a-d) SEM images of $ZnCo_2O_4$ -0.3, $ZnCo_2O_4$ -0.5, $ZnCo_2O_4$ -0.8 and

 $ZnCo_2O_4-1.0.$

Fig. S4. (a) N₂ adsorption-desorption isotherms, and (b) pore size distribution of pristine ZnCo₂O₄ and ZnCo₂O₄-0.5 nanoclusters.

Fig. S5. EPR spectra of pristine $ZnCo_2O_4$ and $ZnCo_2O_4$ -0.5 nanoclusters.

Fig. S6. (a) CV curves at different scan rates of pristine ZnCo₂O₄, (b) GCD curves at different current densities of pristine ZnCo₂O₄.

Fig. S7. (a) CV curves at different scan rates of ZnCo₂O₄-0.5 and Ni foam, (b) GCD curves at different current densities of Ni foam.

Fig. S8. Specific capacitances of Ni foam at different current densities.

			—			
Motorials	Flootrolyto	Voltage	Specific	Cycling	Ref	
Iviaterials	Electionyte	window	capacitance	Stability	Kel.	
S-doped ZnCo ₂ O ₄	3 М КОН	0-0.4 V	522 F g ⁻¹ at	78% after 5,000	[2]	
microspindles			0.5 A g ⁻¹	cycles at 3 A g ⁻¹	[ວ]	
graphene				79.00/ after		
nanoplatelets/		0-0.45 V	960 F g ⁻¹ at 1 A g ⁻¹	78.9% alter	[4]	
ZnCo ₂ O ₄	6 M KOH			2,000 cycles at 5		
microspheres				A g ⁻¹		
		0-0.5 V	1167 F g ⁻¹ at 1 A g ⁻¹	81.3% after	[5]	
Marigold-Like	1 M KOH			10,000 cycles at		
$ZnCo_2O_4$				30 mA cm ⁻²		
	3 М КОН	0-0.4 V	1830 F g ⁻¹ at 3 A g ⁻¹	90% after	[6]	
ZnCo ₂ O ₄ @rGO				10,000 cycles at		
nanocomposite				15 mA cm ⁻²		
N-doped	2 М КОН	0-0.6 V	950 F g ⁻¹ at 1 A g ⁻¹	89.6% after	[7]	
ZnCo ₂ O ₄ @rGO				5,000 cycles at 1		
nanocomposite				A g ⁻¹		
	3 М КОН	0-0.5 V	1671 C g ⁻¹ at 1.1 A g ⁻¹	76.48% after		
NiCoMn-S@				3,000 cycles at	[8]	
ZnCo ₂ O ₄ nanowires				50 mA cm ⁻²		
		0-0.5 V	1728 F g ⁻¹ at 1 A g ⁻¹	97.8% after		
ZnCo ₂ O ₄ @ NiCo ₂ O ₄	6 M KOH			2,000 cycles at	[9]	
nanocomposite				10 A g ⁻¹		
		0-0.35 V	2685.7 F g ⁻¹ at 1 A g ⁻¹	72.59% after	This work	
Coral-like ZnCo ₂ O ₄	6 M KOH			10,000 cycles at		
nanoclusters				3 A g ⁻¹		
				-		

Table S3 Comparison of the electrochemical properties between the coral-like

 $ZnCo_2O_4$ nanoclusters and recent results reported in literature.

Fig. S9. EIS curves of pristine ZnCo₂O₄ and ZnCo₂O₄-0.5 nanoclusters, with the inset showing the corresponding equivalent circuit.

Fig. S10. Contributions of capacitance-controlled (red region) and diffusioncontrolled (blue region) processes at different scan rates of ZnCo₂O₄ nanoclusters

Fig. S11. (a) CV curves of ZnCo₂O₄-0.5 and AC, (b) CV curves of ZnCo₂O₄-0.5 nanoclusters//AC ASC device with varying voltage windows.

References

[1] B. Zhang, L. Gao, H. Bai, Y. Li, B. Jia, X. Zhou, A. Li and L. Li, *J. Alloys Compd.*, 2023, 934, 167979.

[2] N. Ashraf, M. Aadil, S. Zulfiqar, H. Sabeeh, M.A. Khan, I. Shakir, P.O. Agboola and M.F. Warsi, *ChemistrySelect*, 2020, 5, 8129-8136.

[3] Y. Yang, C. Yang, K. Tao, Q. Ma and L. Han, Vacuum, 2020, 181, 109740.

[4] B. Huang, Q. Tang, C. Liang, N. Liu and Y. Wang, Mater. Lett., 2021, 298, 130022.

[5] M.M. Faras, S.S. Patil, P.S. Patil and A.P. Torane, *J. Energy Storage*, 2023, 74, 109490.

[6] B. Naresh, C. Kuchi, S.K. Kummara, O.R. Ankinapalli and P.S. Reddy, *Synth. Met.*, 2023, 293, 117283.

[7] G. Vignesh, R. Ranjithkumar, P. Devendran, N. Nallamuthu, S. Sudhahar and M. Krishna Kumar, *Mater. Sci. Eng.*, *B*, 2023, 290, 116328.

[8] H. Wang, W. Cai, L. He, M. Zhu and Y. Wang, J. Alloys Compd., 2021, 870, 159347.

[9] Z. Wu, X. Yang, H. Gao, H. Shen, H. Wu, X. Xia, X. Wu, W. Lei, J. Yang and Q. Hao, *J. Alloys Compd.*, 2022, 891, 162053.