Ambipolar PEDOT-perfluorinated porphyrin

electropolymer. Application as active material in energy

storage systems

Elizabeth Bermúdez Prieto¹,[†] Edwin J. González López²,[†] Claudia A Solis¹,[†] Jhair C. Leon Jaramillo¹, Lorena P. Macor¹, Rodrigo E. Domínguez³, Yohana B. Palacios², Silvestre Bongiovanni Abel⁴ Edgardo N. Durantini², Luis A. Otero,¹ Miguel A. Gervaldo^{1*} and Daniel A. Heredia^{2*}.

[1] IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina.

[2] IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina.

[3] INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.

[4] INTEMA-CONICET, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, B7606WV Mar del Plata, Buenos Aires, Argentina.

Table of Contents

Description	Page N°
Experimental Procedures. Materials and Instrumentation	S-3
Figure S1. Spectroelectrochemical cell	S-4
Figure S2. ¹ H NMR spectrum of compound TPPF ₂₀	S-5
Figure S3. ¹⁹ F NMR spectrum of compound TPPF ₂₀	S-6
* Corresponding authors. Tel.: +54 358 4676538; fax: +54 358 76233.	

E-mail address: mgervaldo@exa.unrc.edu.ar (M.A. Gervaldo). *E-mail address*: dheredia@exa.unrc.edu.ar (D.A. Heredia).

Figure S4. ¹ H NMR spectrum of compound EDOT-TPPF ₁₆	S-7
Figure S5. COSY NMR spectrum of compound EDOT-TPPF ₁₆	S-8
Figure S6. ¹⁹ F NMR spectrum of compound EDOT-TPPF ₁₆	S-9
Figure S7. MALDI-TOF of compound EDOT-TPPF ₁₆	S-10
Figure S8. FTIR spectrum of compound EDOT-TPPF ₁₆	S-11
Figure S9. Fluorescence emission spectra of TPPF20 and EDOT-TPPF16	S-12
Figure S10. XRD corresponding to PEDOT-TPPF16 sample.	S-13
Figure S11. Comparative FT-IR spectra (ATR mode) for EDOT-TPPF ₁₆ , and PEDOT-TPPF ₁₆ .	S-14
Schem S1. PEDOT polymerization mechanism	S-15
References	S-16

Experimental Procedures. Materials and Instrumentation

All chemicals were commercially acquired from Sigma-Aldrich and used without further purification. DMF was dried using previously established procedures.¹DMF, DCE and ACN were stored with 3Å molecular sieves for at least 24 h before use. Molecular sieves were pre-dried at 300 °C for 24 h immediately before use.ⁱⁱ Reactions were run under an argon atmosphere with freshly anhydrous distilled solvents and employing ovendried glassware. The reactions were monitored by TLC (silica gel 60 GF254). Flash column chromatographies were performed in silica gel 60 H (0,040-0,063 mM, 230-400 mesh ASTM, Merck) by gradient elution of mixture of hexane/DCM, under positive pressure of nitrogen. Nuclear magnetic resonance (NMR) spectra were performed on an FT-NMR Bruker Advance DPX400 at 400 MHz (Bruker BioSpin, Rheinstetten, Deutschland) spectrometer. Me₄Si was used as the internal standard and CDCl₃ as solvent. ¹H spectra were acquired at 400. Resonances of CHCl₃ in CDCl₃: δ 7.26 for ¹H. The magnitudes of the coupling constants (J) are given in Hertz. 2D-NMR (COSY) and ¹⁹F experiment were also recorded. Mass spectrum of was obtained with a Voyager DE STR matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer in positive ion mode, and *trans*, *trans*-1,4-diphenyl-1,3-butadiene was used as matrix. Absorption spectra were carried out on a Shimadzu UV-2401PC spectrometer (Shimadzu Corporation, Tokyo, Japan). Absorption spectra and spectroelectrochemical measurements of PEDOT-TPPF₁₆ were carried out on a UV-Visible Spectrophotometer Hewlett Packard-Diode Matrix 8453. Fluorescence spectra were performed on FluoroMax-4 spectrofluorometer (Horiba Jobin Yvon Inc, Edison, NJ, USA). FTIR measurement was performed using a Bruker Vertex 70 spectrometer in absorption mode under a dry nitrogen purge with a 2 cm⁻¹ resolution, GloBar MIR source, broadband KBr beamsplitter, and liquid nitrogen cooled MCT detector.

Figure S1. Spectroelectrochemical cell. Working electrode: PEDOT-TPPF₁₆ electrodeposited on ITO. Reference electrode: silver. Counter electrode: platinum.

Figure S2. ¹H NMR spectrum of compound TPPF₂₀ in CDCl₃.

Figure S3. ¹⁹F NMR spectrum of compound TPPF₂₀ in CDCl₃.

Figure S4. ¹H NMR spectrum of compound EDOT-TPPF₁₆ in CDCl₃.

Figure S5. COSY NMR spectrum of compound EDOT-TPPF₁₆ in CDCl₃.

Figure S6. ¹⁹F NMR spectrum of compound EDOT-TPPF₁₆ in CDCl₃.

Figure S8. FTIR spectrum of compound EDOT-TPPF₁₆ in KBr disks.

Figure S9. Fluorescence emission spectra recorded in diluted acetonitrile solution at room temperature. λ_{exc} : Soret band. (Abs = 0.1 at Soret band).

Figure S10. XRD corresponding to PEDOT-TPPF₁₆ electrodeposited on ITO.

Figure S11. Comparative FT-IR spectra (ATR mode) for EDOT-TPPF16, and

PEDOT-TPPF₁₆.

Scheme S1. PEDOT polymerization mechanism.

References

i- D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, 4th edition.
Butterworth-Heinemann (1997). ISBN-10: 0750637617. ISBN-13: 978-0750637619.
ii D. Bradley G. Williams, Michelle Lawton, Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants. J. Org. Chem. 75 (2010) 8351-8354.