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Characterization

The structural characterizations of the P-doped WO3 films 

were analyzed by using a scanning electron microscope (SEM, 

FEI--Quanta 250 FEG) and transmission electron microscopy 

(JEOL JEM 2100F, 200 and 297 kV, JEOL Ltd., Tokyo, Japan). 

The crystal structures of the P-doped WO3 films were evaluated 

by X-ray diffraction (XRD, Bruker D2 Phaser, Bruker D8, 

Karlsruhe, Germany) with Cu Kα radiation (λ = 1.5418 Å) in the 

2θ range of 5−90o. The surface chemical state of the P-doped 

WO3 films was checked using a NEXSA X-ray photoelectron 

spectrometer (Thermo Fisher Scientific, East Grinstead, UK) 

equipped with a monochromatic Al-Kα X-ray source (1486.6 

eV). Acquisition parameters of high energy resolution 

photopeaks were 400-μm spot size, 12-kV primary energy, 6.0-

mA emission intensity (corresponding to an irradiation power of 

72 W), constant analyzer energy mode (CAE) 100 eV with 0.1-

eV energy step size. The spectroelectrochemical measurement of 

the P-doped WO3 films and the electrochromic devices were 

performed using a UV−vis−NIR spectrophotometer (U-4100, 

Hitachi, Tokyo, Japan). The electrochemical and electrochromic 

measurements were conducted in a three-electrode 

electrochemical cell containing 1 mol/L PC/LiClO4 aqueous 



solution as the electrolyte. Ag/AgCl as a reference electrode, and 

Pt wires as a counter electrode. Cyclic Voltammetry (CV) was 

performed at different scan rates (20, 40, 60, 80, and 100 mV/s) 

in the voltage range of -1 V to 1 V. The optical properties of the 

electrochromic devices were studied by using a UV-vis 

spectrophotometer with 10 simultaneous chronoamperometry 

(CA) cycles, 100 s for coloring (-1.0 V) and 100 s for bleaching 

(1.0 V). In addition, 600 cycles were performed under the same 

conditions for long-term stability assessment. EIS measurement 

was conducted by applying an AC voltage of 5mV over a 

frequency range of 10 Hz to 100 kHz. The spectroelectrochemical 

measurement of the ECD was applied at different potentials (1 V 

100 s, -2.7 V 100 s). The solar-heat regulation test was carried out 

by a xenon lamp source (Solar-500, Beijing Newbit Technology 

Co., Ltd., Beijing, China).



Fig. S1 SEM images of (a) PW-1 film, (b) PW-3 film, and (c) PW-4 films. (d) (insets: 

cross-sectional SEM images of the P-doped amorphous WO3 films).

Fig.S2 EDX spectra of (a) PW-0 film, (b) PW-1 film (c) PW-2 film (d) PW-3 film, 

and (e) PW-4 film, (e) XPS spectra showing a full scan of the PW-2 film. 

Fi

g.S3 (a) Cyclic voltammograms of the P-doped amorphous WO3 films at a scan rate 

of 60 mV s−1 in 1 M PC/LiClO4. Transmittance spectra of the (b) PW-1 film, (c) PW-

3 film, and (d) PW-4 film in colored state at -1 V and bleached state at 1 V.



Fig.S4 In situ optical responses of the P-doped amorphous WO3 films between the 

colored and bleached states for 100 s per step measured at 550 nm for 1800 s. 

Fig. S5 The response times of the (a) PW-1 film and (b) PW-3 film.

Fig. S6 Optical density vs the charge density of the (a) PW-1 film, (b) PW-3 film, and 

(c) PW-4 film at 550 nm with a potential of -1.0 V. 



Fig. S7 Nyquist diagrams of the P-doped amorphous WO3 films at the frequency of 

10 Hz to 105 Hz. 

Fig.S8 Cyclic voltammograms of the PW-0 films at a scan rate of 60 mV s−1 in 1 M 

PC/LiClO4. (a) under the same deposition time (300 s) (b) under the same deposition 

potential (-0.5 V)



Table S1 The electrochromic performance of PW-2 film compared

with previous reports.
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