Green Design and Synthesis of Some Novel Thiazolidinone-appended Benzothiazole-triazole Hybrids as Antimicrobial Agents

Bhaskar Dwivedi¹, Diksha Bhardwaj², Deepika Choudhary^{1,*} ¹Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan ²Department of Chemistry, S. S. Jain Subodh PG College, Jaipur, Rajasthan Email: <u>deepika028@gmail.com</u>

Table of Contents

- I. Materials and Methods
- II. Characterization data
- III. Copies of ¹HNMR and ¹³CNMR of compounds **4a-l** (S1-S12).
- IV. Copies of ¹HNMR and ¹³CNMR of compounds 6a-h (S13-S20).
 (In ¹HNMR spectra the peaks at around δ 3.31 and δ 2.46 ppm and multiple signal at around δ 40 ppm in ¹³CNMR is comes due to solvent DMSO-*d6*; the peak at around δ 7.25 ppm in ¹HNMR is comes due to solvent CDCl₃).

I. Materials and Methods

All the solvents and reagents (analytical grade) were purchased from commercial suppliers and were used in synthesis without additional purification in the experimental procedures. The melting points of all synthesised compounds were analysed using digital melting point apparatus. The purity of the compounds was assessed using thin-layer silica Gel-G-coated glass plates with a benzene:ethyl acetate (8:2) eluent. Infrared (IR) spectra were recorded using a Shimadzu FT IR–8400S spectrophotometer with KBr pellets. Mass spectrometry measurements were obtained on Waters Xevo G2-S QT LC/MS spectrometer. ¹H and ¹³C NMR spectra were recorded on a Jeol Resonance at 400 and 100MHz, respectively in dimethyl sulfoxide (DMSO- d_6) and CDCl₃ as a solvent. Chemical shifts and absorption frequency have been expressed in terms of δ (ppm) and v (cm⁻¹), respectively. The abbreviations have been used in the spectral data as singlet (s), doublet (d), doublet of doublet (dd), and multiplet (m). ElementarVarioEL III Elemental analyzer is found helpful in elemental analyses.

1. General procedure for the synthesis of benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-phenylmethanimine (4a-l)

The reaction was carried out by using an equimolar mixture of 2-hydrazinobenzothiazole **1** (1mmol), anthranillic acid **2** (1mmol) and aromatic/heteroaromatic aldehydes **3a-1** (1mmol), mixture was refluxed in ethanol (10 mL) as solvent at 80°C for 2 hrs which afforded pale yellow coloured solid. After the completion of reaction as indicated by TLC, the reaction mixture was cooled at room temperature and obtained precipitate was filtered under vacuum, washed with chilled water few times, dried and used in the next step without further purification.

2. General procedure for the synthesis of benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-phenylthiazolidin-4-one (6a-h)

To a pure synthesised compounds, benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1phenylmethanimine 4 (1 mmol) with thioglycolic acid 5 (1 mmol) in ethanol (10 mL) were heated at refluxing for 2 hrs at 80°C which afforded solid mass. After the completion of the reaction, as indicated by TLC, the reaction mixture was cooled to room temperature, and the resulting precipitate was filtered under vacuum. It was then washed several times with chilled water, dried, and the desired compounds were obtained with good to excellent yields after further recrystallization.

3. Antimicrobial activity

Gram-positive (*Staphylococcus aureus* [MTCC 96], *Bacillus subtilis* [MTCC 441]) and Gramnegative (*Klebsiella planticola* [MTCC 530], *Pseudomonas aeruginosa* [MTCC 2453]) pathogenic bacterial strains and *Candida albicans* [MTCC 3017], *Candida albicans* [MTCC 1637] and *Aspergillus niger* [MTCC 872] fungal strains were used in this experiment. The antimicrobial properties of various synthesised compounds were assessed using the agar well diffusion method. Mueller Hinton agar plates were evenly inoculated with pathogenic strains, each at a concentration equivalent to 0.5 McFarland standards (1.5×108 cfu/mL). In a sterile laminar air flow chamber, 6 mm diameter wells were created on the agar plates. These wells were then filled with test samples dissolved in 2% DMSO, with concentrations ranging from 125 to 0.97 µg/mL. Ciprofloxacin and Miconazole were used as positive controls, while DMSO served as the vehicle control. The plates were incubated at 37°C for 24 hours for bacteria and 28°C for 48 hours for fungi. After incubation, the minimum inhibitory concentration (MIC) was determined as the lowest concentration in the series where no inhibition of visual growth was observed in the wells. The entire experiment was conducted in duplicate, and the mean values were reported.

II. Characterization data

i. Synthesised compounds 4a-l

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(4-

fluorophenyl)methanimine (4a): Pale yellow solid, M.p. 284°C, FT-IR (*KBr*, cm⁻¹): 1634 (C=N); ¹H-NMR (*CDCl*₃, 400 MHz) δ : 6.79-6.88 (m, 4H, Ar-H), 6.96 (d, 2H, Ar-H, *J* = 8.4 Hz), 7.33 (d, 2H, Ar-H, *J* = 8.4 Hz), 7.41-7.45 (m, 4H, Ar-H), 8.27 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 161.2, 160.9, 158.4, 153.8, 140.6, 139.7, 133.0, 132.1, 131.5, 130.4, 126.6, 126.2, 124.9, 122.8, 122.6, 122.5, 119.4, 118.9, 116.69, 116.4 ppm; MS (m/z): 373.084 [M+H]⁺; Anal. calcd. for C₂₁H₁₃FN₄S: C 67.73; H 3.52; N 15.04; S 8.61%; Found C 67.85; H 3.49; N 14.99; S 8.55%.

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(4-

chlorophenyl)methanimine (4b): Pale yellow solid, M.p. 282°C, FT-IR (*KBr*, cm⁻¹): 1646 (C=N); ¹H-NMR (*CDCl*₃, 400 MHz) δ : 6.79 (d, 2H, Ar-H, *J* = 8.8 *Hz*), 6.98 (d, 2H, Ar-H, *J* = 8.8 Hz), 7.12-7.17 (m, 4H, Ar-H), 7.35-7.44 (m, 4H, Ar-H), 8.43 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 160.6, 153.5, 152.2, 148.4, 148.3, 146.1, 144.9, 143.0, 131.2, 131.1, 127.9, 125.4, 124.7, 124.6, 121.8, 118.6, 118.5, 110.7, 110.5, 110.2 ppm; MS(m/z): 389.055 [M+H]⁺; Anal. calcd. for C₂₁H₁₃ClN₄S: C 64.86; H 3.37; Cl 9.12; N 14.41; S 8.24 %; Found C 64.98; H 3.34; N 14.36; S 8.18 %.

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(p-tolyl)methanimine (4c): Yellow solid, M.p. 260°C, FT-IR (*KBr*, cm⁻¹) δ : 1653 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 2.31 (s, 3H, CH₃), 7.13 (dd, 4H, Ar-H, *J* = 8.4, 6.2 *Hz*), 7.47 (d, 2H, Ar-H, *J* = 8 Hz), 7.66 (dd, 2H, Ar-H, *J* = 8.0, 6.4 Hz), 7.94-7.99 (m, 4H, Ar-H), 8.36 (s, 1H, CH); ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 160.9, 152.9, 148.1, 148.0, 145.1, 142.1, 138.3, 138.2, 135.5, 135.4, 131.6, 131.5, 129.9, 129.8, 129.6, 128.5, 127.9, 127.8, 126.1, 124.1, 120.9, 21.2 ppm; MS(m/z): 369.110 [M+H]⁺; Anal. calcd. for C₂₂H₁₆N₄S: C 71.72; H 4.38; N 15.21; S 8.70 %; Found C 71.84; H 4.35; N 15.16; S 8.64 %.

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(4-nitrophenyl)methanimine (4d): Yellow solid, M.p. 286°C, FT-IR (*KBr*, cm⁻¹): 1647 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 6.58-6.68 (m, 3H, Ar-H), 6.88 (d, 2H, Ar-H, J = 7.2 Hz), 7.00 (d, 2H, Ar-H, J = 7.2 Hz), 7.20-7.26 (m, 2H, Ar-H), 7.40-7.44 (m, 3H, Ar-H) 8.67 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 161.6, 160.8, 160.7, 156.2, 155.4, 148.9, 140.1, 139.8, 133.3, 133.1, 131.3, 131.2, 129.8, 126.8, 126.2, 124.8, 124.0, 122.2, 119.6, 119.5 ppm; MS(m/z): 400.079 [M+H]⁺; Anal. calcd. for C₂₁H₁₃N₅O₂S: C 63.15; H 3.28; N 17.53; O 8.01; S 8.03 %; Found C 63.27; H 3.25; N 17.48; O 7.93; S 7.97 %.

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(4-

methoxyphenyl)methanimine (4e): White solid, M.p. 245°C, FT-IR (*KBr*, cm⁻¹): 1637 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.68 (s, 3H, OCH₃), 7.01-7.28 (m, 3H, Ar-H,), 7.41-7.43 (m, 3H, Ar-H), 7.54 (d, 2H, Ar-H, *J* = 8.4 Hz), 7.63-7.74 (m, 2H, Ar-H), 7.76 (d, 2H, Ar-H, *J* = 8.4 Hz), 8.48 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 161.4, 160.4, 154.9, 154.8, 148.9, 145.5, 145.4, 142.7, 139.0, 138.9, 138.8, 136.1, 135.9, 131.5, 129.8, 128.1, 126.9, 125.9, 124.9, 119.6, 55.0 ppm; MS(m/z): 385.104 [M+H]⁺; Anal. calcd. for C₂₂H₁₆N₄OS: C 68.73; H 4.20; N 14.57; O 4.16; S 8.34 %; Found C 68.85; H 4.17; N 14.52; O 4.08; S 8.28 %.

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(3,4-

dimethoxyphenyl)methanimine (4f): White solid, M.p. 281°C, FT-IR (*KBr*, cm⁻¹): 1641 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.73 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 6.64 (d, 2H, Ar-H, *J* = 7.4 Hz), 6.79 (d, 2H, Ar-H, *J* = 7.6 Hz), 6.95-7.07 (m, 2H, Ar-H), 7.31 (s, 1H, Ar-H), 7.42-7.59 (m, 4H, Ar-H), 8.34 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 161.9, 161.8, 153.1, 152.9, 146.5, 146.4, 140.5, 140.3, 136.2, 133.8, 133.6, 130.0, 129.8, 124.5, 124.3, 122.7, 122.5, 118.4, 118.1, 53.1, 53.0 ppm; MS(m/z): 415.115 [M+H]⁺; Anal. calcd. for C₂₃H₁₈N₄O₂S: C 66.65; H 4.38; N 13.52; O 7.72; S 7.73 %; Found C 66.77; H 4.35; N 13.47; O 7.64; S 7.67%.

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(3,4,5-

trimethoxyphenyl)methanimine (4g): White solid, M.p. 220°C, FT-IR (*KBr*, cm⁻¹): 1645 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ: 3.45 (s, 3H, OCH₃), 3.61 (s, 3H, di-OCH₃), 7.36 (s, 1H, Ar-H), 7.38 (s, 1H, Ar-H), 7.50-7.54 (m, 3H, Ar-H), 7.68-7.73 (m, 5H, Ar-H), 8.93 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ: 161.3, 160.9, 153.4, 153.1, 148.2, 147.0, 141.9, 141.7, 133.9, 133.2, 132.9, 132.7, 127.1, 126.9, 126.8, 123.2, 123.0, 117.6, 117.5, 117.2, 56.4, 53.1, 53.0 ppm; MS(m/z): 445.126 [M+H]⁺; Anal. calcd. for C₂₄H₂₀N₄O₃S: C 64.85; H 4.54; N 12.60; O 10.80; S 7.21 %; Found C 64.73; H 4.51; N 12.55; O 10.72; S 7.15 %.

4-(((2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)imino)methyl)-2-bromo-6-

methoxyphenol (4h): Pale yellow solid, M.p. 278°C, FT-IR (*KBr*, cm⁻¹): 1639 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.85 (s, 3H, OCH₃), 7.07 (s, 1H, Ar-H), 7.30 (s, 1H, Ar-H), 7.46-7.64 (m, 8H, Ar-H), 8.64 (s, 1H, CH), 9.49 (s, 1H, OH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 162.2, 159.7, 152.6, 147.9, 147.7, 145.8, 143.8, 143.6, 140.1, 139.8, 137.9, 135.5, 134.3, 130.0, 129.9, 129.8, 128.5, 126.1, 125.3, 120.9, 120.8, 56.4 ppm; MS(m/z): 479.010 [M+H]⁺; Anal. calcd. for C₂₂H₁₅BrN₄O₂S: C 55.12; H 3.15; N 11.69; O 6.68; S 6.69 %; Found C 55.24; H 3.12; N 11.64; O 6.60; S 6.63 %.

N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(2,5-

dimethoxyphenyl)methanimine (4i): Pale yellow solid, M.p 283°C, FT-IR (*KBr*, cm⁻¹): 1640 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.61 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 6.75-6.81 (m, 3H, Ar-H), 6.88 (d, 2H, Ar-H, *J* = 8 Hz), 7.12-7.28 (m, 2H, Ar-H), 7.39 (d, 2H, Ar-H, *J* = 8 Hz), 7.51 (d, 2H, Ar-H, *J* = 8 Hz), 8.86 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 161.9, 160.4, 156.5, 155.0, 148.9, 140.0, 135.4, 134.1, 133.8, 129.6, 126.8, 124.9, 124.1, 119.6, 118.5, 118.2, 116.1, 112.7, 111.6, 111.5, 56.0, 55.2 ppm; MS(m/z): 415.115 [M+H]⁺; Anal. calcd. for C₂₃H₁₈N₄O₂S: C 66.65; H 4.38; N 13.52; O 7.72; S 7.73 % Found C 66.77; H 4.35; N 13.47; O 7.64; S 7.67 %.

(E)-N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(furan-2-yl)methanimine

(4j): Pale yellow solid, M.p. 276°C, FT-IR (*KBr*, cm⁻¹): 1643 (C=N); ¹H-NMR (*DMSO-d*₆, 400MHz) δ : 6.74 (dd, 2H, Ar-H, J = 6.8, 7.2 Hz), 7.06-7.14 (m, 2H, Ar-H), 7.34-7.49 (m, 7H, Ar-H), 8.55 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 161.1, 154.7, 148.9, 138.4, 133.4, 130.8, 129.8, 126.9, 126.4, 124.9, 124.7, 123.2, 123.1, 121.7, 121.6, 119.7, 119.6, 117.9, 112.7 ppm; MS(m/z): 345.073 [M+H]⁺; Anal. calcd. for C₁₉H₁₂N₄OS: C 66.26; H 3.51; N 16.27; O 4.65; S 9.31 % Found C 66.38; H 3.48; N 16.22; O 4.57; S 9.25 %.

(E)-N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(thiophen-2-

yl)methanimine (4k): Pale yellow solid, M.p. 295°C, FT-IR (*KBr*, cm⁻¹): 1641 (C=N); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 7.03-7.08 (m, 3H, Ar-H), 7.12 (d, 2H, Ar-H, *J* = 7.4 Hz), 7.26-7.32 (m, 2H, Ar-H), 7.42-7.48 (m, 4H, Ar-H), 8.63 (s, 1H, CH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 162.4, 154.9, 154.8, 152.1, 148.9, 142.7, 131.5, 129.4, 128.1, 126.9, 125.9, 124.9, 124.7, 124.6, 122.5, 122.3, 122.1, 119.6 ppm; MS(m/z): 361.050 [M+H]⁺; Anal. calcd. for C₁₉H₁₂N₄S₂: C 63.31; H 3.36; N 15.54; S 17.79 % Found C 63.43; H 3.33; N 15.49; S 17.73 %.

(E)-N-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-1-(1H-indol-3-

yl)methanimine (4l): Yellow solid, M.p. 289°C, FT-IR (*KBr*, cm⁻¹): 1638 (C=N), 3424 (N-H); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 6.71 (dd, 4H, Ar-H, *J* = 7.2, 6.4 Hz), 6.96 (s, 1H, Ar-H), 7.11-7.18 (m, 3H, Ar-H), 7.33-7.42 (m, 5H, Ar-H), 8.79 (s, 1H, CH), 10.55 (s, 1H, NH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 162.4, 160.4, 154.9, 148.9, 143.1, 134.4, 134.1, 130.8, 129.7, 128.4, 128.2, 126.9, 124.9, 124.6, 123.8, 123.6, 122.3, 122.2, 121.1, 119.6, 113.5, 112.7, 112.6 ppm; MS(m/z): 394.105 [M+H]⁺; Anal. calcd. for C₂₃H₁₅N₅S: C 70.21; H 3.84; N 17.80; S 8.15 % Found C 70.33; H 3.81; N 17.75; S 8.09 %.

ii. Synthesised compounds 6a-h

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(4-fluorophenyl)thiazolidin-4-one (6a): Pale yellow solid, M.p. 280°C, FT-IR (*KBr*, cm⁻¹): 1690 (C=O), 685 (C-S); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.59 (d, 1H, CH₂, *J* = 8.8 Hz), 3.90 (d, 1H, CH₂, *J* = 8.8 Hz), 5.93 (s, 1H, CH), 6.64-7.05 (m, 4H, Ar-H), 7.21-7.32 (m, 2H, Ar-H), 7.42-7.46 (m, 2H, Ar-H), 7.54-7.58 (m, 2H, Ar-H), 7.60-7.62 (m, 2H, Ar-H) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 35.5, 77.7, 112.3, 112.7, 119.2, 119.5, 121.9, 123.6, 123.9, 124.8, 126.2, 126.5, 126.8, 129.2, 131.2, 131.6, 133.0, 133.3, 139.8, 140.1, 148.9, 155.4, 169.6 ppm; MS(m/z): 447.067 [M+H]⁺ ; Anal. calcd. for C₂₃H₁₅FN₄OS₂: C 61.87; H 3.39; F 4.25; N 12.55; O 3.58; S 14.36 % Found C 61.99; H 3.36; N 12.50; O 3.50; S 14.30 %

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(3,4-

dimethoxyphenyl)thiazolidin-4-one (6b): White solid, M.p. 278°C, FT-IR (*KBr*, cm⁻¹): 1710 (C=O), 692 (C-S); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.31 (s, 3H, OCH₃), 3.40 (s, 3H, OCH₃), 3.70 (d, 1H, CH₂, *J* = 9.6 Hz), 4.162 (d, 1H, CH₂, *J* = 9.6 Hz), 6.042 (s, 1H, CH), 6.86-6.99 (m, 3H, Ar-H), 7.06 (s, 1H, Ar-H), 7.18-7.27 (m, 3H, Ar-H), 7.43-7.45 (m, 3H, Ar-H), 7.60-7.62 (m, 1H, Ar-H) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 35.3, 53.1, 53.8, 68.3, 112.7, 116.4, 116.7, 119.6, 119.7, 123.2, 123.5, 124.9, 126.4, 126.9, 129.9, 130.8, 133.4, 133.7, 139.4, 139.8, 142.2, 148.9, 154.7, 168.9 ppm; MS(m/z): 489.098 [M+H]⁺; Anal. calcd. for C₂₅H₂₀N₄O₃S₂: C 61.46; H 4.13; N 11.47; O 9.82; S 13.12 % Found C 61.58; H 4.10; N 11.42; O 9.74; S 13.06 %

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(3-bromo-4-hydroxy-5-

methoxyphenyl)thiazolidin-4-one (6c): Pale yellow solid, M.p. 272°C, FT-IR (*KBr*, cm⁻¹): 1704 (C=O), 689 (C-S); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.40 (s, 3H, OCH₃), 3.70 (d, 1H, CH₂, *J* = 5.2 Hz), 4.26 (d, 1H, CH₂, *J* = 5.2 Hz), 6.30 (s, 1H, CH), 6.77 (s, 1H, Ar-H), 6.98-7.11

(m, 1H, Ar-H), 7.25-7.32 (m, 6H, Ar-H), 7.52-7.54 (m, 1H, Ar-H), 7.72 (s, 1H, Ar-H), 9.53 (s, 1H, OH) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 35.1, 56.0, 72.5, 112.1, 112.7, 119.6, 124.7, 124.9, 125.9, 126.9, 128.1, 129.8, 131.5, 133.7, 133.9, 134.1, 135.5, 139.7, 140.0, 142.7, 148.9, 154.7, 154.9, 169.4 ppm; MS(m/z): 552.993 [M+H]⁺; Anal. calcd. for C₂₄H₁₇BrN₄O₃S₂: C 52.09; H 3.10; N 10.12; O 8.67; S 11.59 % Found C 52.21; H 3.07; N 10.07; O 8.59; S 11.53 %.

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(4-nitrophenyl)thiazolidin-4-

one (6d): Yellow solid, M.p. 281°C, FT-IR (*KBr*, cm⁻¹): 1708 (C=O), 691 (C-S); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.38 (d, 1H, CH₂, J = 8.0 Hz), 3.80 (d, 1H, CH₂, J = 8.0 Hz), 6.32 (s, 1H, CH), 6.78-6.80 (m, 1H, Ar-H), 7.19-7.22 (m, 3H, Ar-H), 7.32-7.37 (m, 5H, Ar-H), 7.45-7.48 (m, 1H, Ar-H), 7.58-7.60 (m, 1H, Ar-H), 7.88-7.92 (m, 1H, Ar-H) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 35.1, 72.6, 111.5, 111.6, 112.7, 116.0, 119.6, 124.1, 124.9, 126.8, 129.6, 136.2, 138.1, 140.0, 144.1, 144.5, 145.1, 146.3, 148.9, 155.0, 156.5, 169.5 ppm; MS(m/z): 474.062 [M+H]⁺; Anal. calcd. for C₂₃H₁₅N₅O₃S₂: C 58.34; H 3.19; N 14.79; O 10.14; S 13.54 % Found C 58.46; H 3.16; N 14.74; O 10.06; S 13.48%.

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(3,4,5-

trimethoxyphenyl)thiazolidin-4-one (6e): White solid, M.p. 216°C, FT-IR (*KBr*, cm⁻¹): 1700 (C=O), 687 (C-S); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ : 3.35 (s, 6H, OCH₃), 3.42 (s, 3H, OCH₃), 3.90 (d, 1H, CH₂, *J* = 7.2 Hz), 4.08 (d, 1H, CH₂, *J* = 7.2 Hz), 6.18 (s, 1H, CH), 6.76 (s, 1H, Ar-H), 7.24-7.34 (m, 6H, Ar-H), 7.53-7.57 (m, 2H, Ar-H), 7.72 (s, 1H, Ar-H) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ : 35.1, 56.0, 56.8, 60.3, 72.2, 110.3, 110.7, 112.2, 112.6, 119.5, 122.3, 124.4, 124.8, 125.7, 126.5, 126.8, 128.9, 129.2, 130.2, 130.8, 141.3, 141.6, 148.9, 154.0, 155.3, 169.6 ppm; MS(m/z): 519.108 [M+H]⁺; Anal. calcd. for C₂₆H₂₂N₄O₄S₂: C 60.22; H 4.28; N 10.80; O 12.34; S 12.36 % Found C 60.34; H 4.25; N 10.75; O 12.26; S 12.28 %.

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(furan-2-yl)thiazolidin-4-one (**6f):** Pale yellow solid, M.p. 271°C, FT-IR (*KBr*, cm⁻¹): 1705 (C=O), 688 (C-S); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ: 3.41 (d, 1H, CH₂, *J* = 8.8 Hz), 3.61 (d, 1H, CH₂, *J* = 8.8 Hz), 6.31 (s, 1H, CH), 6.71-6.75 (m, 1H, Ar-H), 6.98-7.19 (m, 2H, Ar-H), 7.24-7.31 (m, 4H, Ar-H), 7.42-7.45 (m, 1H, Ar-H), 7.52-7.54 (m, 1H, Ar-H), 7.72-7.73 (m, 1H, Ar-H) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ: 35.2, 67.5, 112.6, 112.7, 113.5, 119.6, 122.0, 122.6, 124.6, 124.9, 126.9, 128.1, 129.7, 130.8, 133.2, 133.4, 134.4, 143.1, 148.9, 154.9, 169.4 ppm; MS(m/z): 419.056 [M+H]⁺; Anal. calcd. for C₂₁H₁₄N₄O₂S₂: C 60.27; H 3.37; N 13.39; O 7.65; S 15.32 % Found C 60.39; H 3.34; N 13.34; O 7.57; S 15.24 %.

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(thiophen-2-yl)thiazolidin-4one (6g): Pale yellow solid, M.p. 290°C, FT-IR (*KBr*, cm⁻¹): 1700 (C=O), 689 (C-S); ¹H-NMR (*DMSO-d*₆, 400 MHz) δ: 3.39 (d, 1H, CH₂, *J* = 10 Hz), 3.61 (d, 1H, CH₂, *J* = 10 Hz), 6.11 (s, 1H, CH), 6.69-6.71 (m, 3H, Ar-H), 7.22-7.38 (m, 5H, Ar-H), 7.52-7.54 (m, H, Ar-H), 7.68-7.73 (m, 2H, Ar-H) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ: 35.2, 64.4, 110.4, 110.6, 112.6, 115.4, 115.8, 119.5, 119.8, 121.0, 121.9, 123.7, 124.9, 126.9, 128.9, 129.8, 131.5, 143.8, 149.0, 155.3, 168.8 ppm; MS(m/z): 435.033 [M+H]⁺; Anal. calcd. for C₂₁H₁₄N₄OS₃: C 58.04; H 3.25; N 12.89; O 3.68; S 22.13 % Found C 58.16; H 3.22; N 12.84; O 3.60; S 22.07 %.

3-(2-(benzo[4,5]thiazolo[2,3-c][1,2,4]triazol-3-yl)phenyl)-2-(1H-indol-3-yl)thiazolidin-4one (6h): White solid, M.p. 283°C, FT-IR (*KBr*, cm⁻¹): 1695 (C=O), 686 (C-S), 3412 (N-H); ¹H-NMR (*DMSO-d*₆, 400MHz) δ: 3.86 (d, 1H, CH₂, J=7.2 Hz), 3.92 (d, 1H, CH₂, J=7.2 Hz), 6.31 (s, 1H, CH), 6.74-6.76 (m, 1H, Ar-H), 6.88 (s, 1H, Ar-H), 7.14-7.17 (m, 3H, Ar-H), 7.25-7.32 (m, 2H, Ar-H), 7.52-7.60 (m, 3H, Ar-H), 7.72-7.78 (m, 3H, Ar-H), 10.78 (s, 1H, N-H) ppm; ¹³C-NMR (*DMSO-d*₆, 100 MHz) δ: 33.4, 72.2, 112.0, 112.3, 112.8, 114.1, 116.3, 117.5, 119.3, 121.6, 121.9, 123.0, 124.3, 126.5, 127.7, 129.8, 130.0, 132.4, 132.7, 142.1, 142.4, 149.7, 158.2, 169.0 ppm; MS(m/z): 468.087 [M+H]⁺; Anal. calcd. for C₂₅H₁₇N₅OS₂: C 64.22; H 3.66; N 14.98; O 3.42; S 13.71 % Found C 64.34; H 3.63; N 14.93; O 3.34; S 13.65 %.

NMR spectra Information

Chemical Shifts: The chemical shifts of each peak are displayed below the peaks, as per the standard practice at the institution where the spectra were obtained.

Integration: Similarly, the integration values are displayed at the top of the spectra, again, in accordance with the standard practice at the institution where the spectra were obtained.

Figure S1(a) ¹H NMR spectrum of the synthesized compound 4a

Figure S1(b) ¹³C NMR spectrum of the synthesized compound 4a

Figure S2(a) ¹H NMR spectrum of the synthesized compound 4b

Figure S2(b) ¹³C NMR spectrum of the synthesized compound 4b

Figure S3(a) ¹H NMR spectrum of the synthesized compound 4c

Figure S3(b) 13 C NMR spectrum of the synthesized compound 4c

Figure S4(a) ¹H NMR spectrum of the synthesized compound 4d

Figure S4(b) ¹³C NMR spectrum of the synthesized compound 4d

Figure S5(a) ¹H NMR spectrum of the synthesized compound 4e

Figure S5(b) ¹³C NMR spectrum of the synthesized compound 4e

Figure S6(a) ¹H NMR spectrum of the synthesized compound 4f

Figure S6(b) ¹³C NMR spectrum of the synthesized compound 4f

Figure S7(a) ¹H NMR spectrum of the synthesized compound 4g

Figure S7(b) ¹³C NMR spectrum of the synthesized compound 4g

Figure S8(a) 1 H NMR spectrum of the synthesized compound 4h

Figure S8(b) ¹³C NMR spectrum of the synthesized compound 4h

Figure S9(a) ¹H NMR spectrum of the synthesized compound 4i

Figure S9(b) ¹³C NMR spectrum of the synthesized compound 4i

Figure S10(a) ¹H NMR spectrum of the synthesized compound 4j

Figure S10(b) ¹³C NMR spectrum of the synthesized compound 4j

Figure S11(a) ¹H NMR spectrum of the synthesized compound 4k

Figure S11(b) ¹³C NMR spectrum of the synthesized compound 4k

Figure S12(a) ¹H NMR spectrum of the synthesized compound 41

Figure S12(b) ¹³C NMR spectrum of the synthesized compound 4l

Figure S13(a) ¹H NMR spectrum of the synthesized compound 6a

Figure S13(b) ¹³C NMR spectrum of the synthesized compound 6a

Figure S14(a) ¹H NMR spectrum of the synthesized compound 6b

Figure S14(b) ¹³C NMR spectrum of the synthesized compound 6b

Figure S15(a) ¹H NMR spectrum of the synthesized compound 6c

Figure S15(b) ¹³C NMR spectrum of the synthesized compound 6c

Figure S16(a) ¹H NMR spectrum of the synthesized compound 6d

Figure S16(b) ¹³C NMR spectrum of the synthesized compound 6d

Figure S17(a) ¹H NMR spectrum of the synthesized compound 6e

Figure S17(b) ¹³C NMR spectrum of the synthesized compound 6e

Figure S18(a) ¹H NMR spectrum of the synthesized compound 6f

Figure S18(b) ¹³C NMR spectrum of the synthesized compound 6f

Figure S19(a) ¹H NMR spectrum of the synthesized compound 6g

Figure S19(b) ¹³C NMR spectrum of the synthesized compound 6g

Figure S20(a) ¹H NMR spectrum of the synthesized compound 6h

Figure S20(b) ¹³C NMR spectrum of the synthesized compound 6h