Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Novel mono substituted pyridoimidazoisoquinoliniums via a silver-catalyzed intramolecular cyclization and their applications in cellular imaging

Masato Kawakubo,^a Yoshikazu Inoh,^a Yuki Murata,^a Mio Matsumura,^{*a} Tadahide Furuno,^{*a} and Shuji Yasuike^a

^a School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan

> * E-mail: m-matsu@dpc.agu.ac.jp furuno@dpc.agu.ac.jp

Contents

1.	General information	S2
2.	General procedure for the cyclization	S2
3.	Characterization data	S3
4.	Single crystal X-ray diffraction experiment	S 6
5.	Optical property of 2c	S7
6.	Cell culture and imaging	S 8
7.	References	S11
8.	Copies of ¹ H and ¹³ C NMR spectra of novel compounds	S12

1. General information

All the chemicals including organic solvents were obtained from commercial vendors and used as received without further purification. All chromatographic separations were accomplished with Silica Gel 60N (Kanto Chemical Co., Inc.) or CHROMATOREX PSQ60B (Fuji Silysia Chemical LTD). Thin-layer chromatography (TLC) was performed using Macherey-Nagel Pre-coated TLC plates Sil G25 UV₂₅₄. 2-(2-Ethynylphenyl)imidazo[1,2-a]pyridines (1) were prepared according to the reported procedures.¹ Melting points measurements were conducted on a Yanagimoto micro melting point hot-stage apparatus (MP-S3) and reported as uncorrected values. ¹H NMR (TMS: $\delta = 0.00$ ppm as an internal standard), ¹³C NMR (CD₃OD: δ = 49.00 and DMSO-d₆: δ = 39.52 ppm as an internal standard), and ¹⁹F NMR (376 MHz, benzotrifluoride; $\delta = -64.0$ ppm as an external standard) spectra were recorded on JEOL ECZ-400S (for ¹H-, ¹³C-, and ¹⁹F NMR, 400, 100 and 376 MHz, respectively) spectrometers. Mass spectra were obtained an Agilent 5977E Diff-SST MSD-230V instrument (EI) and Agilent 6230 Accurate-Mass TOF LC/MS system (ESI). X-ray were recorded on Rigaku XtaLAB Synergy with HyPix3000 diffractometer. IR spectra were recorded on a FTIR-8400S or IRAffinity-1S system from Shimadzu spectrometer and were reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. UV/Vis spectra were recorded at room temperature on a HITACHI U-2800A spectrophotometer (C = $2.5 \times 10^{-5} - 5.1 \times 10^{-5}$ M in CH₃OH) and fluorescence spectra on a JASCO FP-8300 luminescence spectrometer (C = $2.2 \times 10^{-6} - 4.2 \times 10^{-6}$ M in CH₃OH). Fluorescence signals were observed under a confocal laser scanning microscope (LSM-800; Carl Zeiss) and analyzed by ZEN2 software.

2. General procedure for the cyclization of 2-(2-ethynylphenyl)imidazo[1,2-a]pyridines

2-(2-Ethynylphenyl)imidazo[1,2-*a*]pyridine (1) (0.5 mmol), silver trifluoromethanesulfonate (13 mg, 0.05 mmol, 10 mol%), lithium trifluoromethanesulfonate (78 mg, 0.5 mmol, 1 eq.), and silica gel (1.27 g) was dissolved in CH_2Cl_2 (4 mL) and stirred at room temperature under air. After reaction completed, the reaction mixture was filtered and washed with CH_3OH . The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using CH_2Cl_2/CH_3OH as eluent to give **2**.

3. Characterization data

6-(4-Methoxyphenyl)pyrido[1',2';2,3]imidazo[5,1-*a*]isoquinolin-7-ium trifluoromethanesulfonate (**2a**) Yield: 236 mg (99%); Pale yellow powder (CH₃OH); mp 231–232.5 °C; R_f = 0.3 (CH₂Cl₂-CH₃OH, 10:1); ¹H NMR (400 MHz, CD₃OD): δ = 9.28 (s, 1 H, Ar-H), 9.05 (d, *J* = 6.9 Hz, 1 H, Ar-H), 8.46 (t, *J* = 3.7 Hz, 1 H, Ar-H), 7.91– 7.89 (m, 1 H, Ar-H), 7.80–7.62 (m, 6 H, Ar-H), 7.25 (t, *J* = 8.7 Hz, 3 H, Ar-H), 6.80 (d, *J* = 9.6 Hz, 1 H, Ar-H), 3.96 (s, 3 H, OCH₃); ¹³C NMR (100 MHz, CD₃OD): δ = 163.2 (C), 136.2 (C), 135.8 (C), 134.1 (C), 132.5 (CH), 132.3 (CH), 132.2 (CH), 130.72 (CH), 130.68 (C), 130.5 (CH), 129.0 (CH), 126.1 (C), 125.3 (CH), 121.9 (C), 120.2 (CH), 119.3 (CH), 116.1 (CH), 115.1 (CH), 108.7 (CH), 56.1 (CH₃); ¹⁹F NMR (376 MHz, CD₃OD): δ = -81.34; IR (KBr)

 $v = 3123, 3082, 1256, 1032, 638 \text{ cm}^{-1}; \text{HRMS (ESI)}: m/z \text{ calcd for } C_{22}H_{17}N_2O [M-OTf]^+: 325.1335, \text{ found } 325.1332.$

6-(4-Methylphenyl)pyrido[1',2';2,3]imidazo[5,1-*a*]isoquinolin-7-ium trifluoromethanesulfonate (**2b**)

Yield: 213 mg (93%); Yellow plate (CH₃OH); mp 232–233.5 °C; $R_f = 0.3$ (CH₂Cl₂-CH₃OH, 10:1); ¹H NMR (400 MHz, CD₃OD): $\delta = 9.29$ (s, 1 H, Ar-H), 9.05 (dt, J = 6.9, 1.4 Hz, 1 H, Ar-H), 8.47 (dd, J = 5.5, 3.2 Hz, 1 H, Ar-H), 7.92–7.89 (m, 1 H, Ar-H), 7.82–7.77 (m, 2 H, Ar-H), 7.73–7.59 (m, 4 H, Ar-H), 7.53 (d, J = 7.8 Hz, 2 H, Ar-H), 7.28 (s, 1 H, Ar-H), 6.76 (d, J = 9.1 Hz, 1 H, Ar-H), 2.56 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD): $\delta = 142.9$ (C), 136.2 (C), 136.0 (C), 134.1 (C), 132.6 (CH), 132.2 (CH), 131.4 (CH), 131.3 (C), 130.81 (CH), 130.77 (CH), 130.6 (C), 130.5 (CH), 129.1 (CH), 125.4 (CH), 122.0 (C), 120.2 (CH), 119.3 (CH), 115.0 (CH), 108.7 (CH), 21.6 (CH₃); ¹⁹F NMR (376 MHz, CD₃OD): $\delta = -81.36$; IR (KBr) v = 3100, 1258, 1169, 1028, 637 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₂H₁₇N₂ [M–OTf]⁺: 309.1386, found 309.1393.

6-Phenyl-pyrido[1',2';2,3]imidazo[5,1-*a*]isoquinolin-7-ium trifluoromethanesulfonate (2c)

Yield: 222 mg (99%); Yellow plate (CH₃OH); mp 242–243.5 °C; $R_f = 0.3$ (CH₂Cl₂-CH₃OH, 10:1); ¹H NMR (400 MHz, CD₃OD): $\delta = 9.30$ (s, 1 H, Ar-H), 9.06 (d, J = 6.4 Hz, 1 H, Ar-H), 8.49–8.47 (m, 1 H, Ar-H), 7.93–7.91 (m, 1 H, Ar-H), 7.83–7.63 (m, 9 H, Ar-H), 7.32 (s, 1 H, Ar-H), 6.68 (d, J = 9.1 Hz, 1 H, Ar-H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 136.2$ (C), 135.8 (C), 134.3 (C), 134.0 (C), 132.6 (CH), 132.3 (CH), 132.2 (CH), 130.91 (CH), 130.88 (CH), 130.56 (C), 130.56 (CH), 129.1 (CH), 125.4 (CH), 122.0 (C), 120.2 (CH), 119.4 (CH), 114.9 (CH), 108.8

(CH); ¹⁹F NMR (376 MHz, CD₃OD): $\delta = -81.35$; IR (KBr) v = 3092, 1275, 1250, 1028, 638 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₁H₁₅N₂ [M–OTf]⁺: 295.1230, found 295.1226.

6-(4-Fluorophenyl)pyrido[1',2';2,3]imidazo[5,1-a]isoquinolin-7-ium trifluoromethanesulfonate (2d)

Yield: 227 mg (98%); Colorless plate (CH₃OH); mp 283–284.5 °C; $R_f = 0.6$ (CH₂Cl₂-CH₃OH, 5:1); ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.56$ (s, 1 H, Ar-H), 9.22 (d, J = 6.9 Hz, 1 H, Ar-H), 8.58–8.56 (m, 1 H, Ar-H), 8.00–7.98 (m, 1 H, Ar-H), 7.88–7.81 (m, 5 H, Ar-H), 7.74 (t, J = 6.4 Hz, 1 H, Ar-H), 7.58 (tt, J = 11.0, 2.3 Hz, 2 H, Ar-H), 7.43 (s, 1 H, Ar-H), 6.71 (d, J = 9.1 Hz, 1 H, Ar-H); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 163.4$ (d, ¹ $J_{C, F} = 247.6$ Hz, C), 134.4 (C), 133.3 (C), 132.2 (d, ³ $J_{C, F} = 8.7$ Hz, CH), 131.8 (C), 131.6 (CH), 131.4 (CH), 129.8 (CH), 129.6 (CH), 129.2 (C), 128.8 (C), 127.9 (CH), 124.3 (CH), 120.6 (C), 119.1 (CH), 117.8 (CH), 116.8 (d, ² $J_{C, F} = 22.2$ Hz, CH), 113.5 (CH), 107.9 (CH); ¹⁹F NMR (376 MHz, DMSO-*d*₆): $\delta = -79.08$ (3 F), -110.61 (1 F); IR (ATR) $\nu = 3084$, 1250, 1153, 1028, 637 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₁H₁₄FN₂ [M–OTf]⁺: 313.1136, found 313.1130.

6-[4-(Trifluoromethyl)phenyl]pyrido[1',2';2,3]imidazo[5,1-*a*]isoquinolin-7-ium trifluoromethanesulfonate (**2e**) Yield: 197 mg (77%); Pale yellow plate (CH₃OH); mp >300 °C; R_f = 0.3 (CH₂Cl₂-CH₃OH, 10:1); ¹H NMR (400 MHz, CD₃OD): δ = 9.34 (s, 1 H, Ar-H), 9.09 (d, *J* = 6.4 Hz, 1 H, Ar-H), 8.51 (t, *J* = 5.0 Hz, 1 H, Ar-H), 8.03 (d, *J* = 8.2 Hz, 2 H, Ar-H), 7.98–7.94 (m, 3 H, Ar-H), 7.86–7.76 (m, 3 H, Ar-H), 7.68 (t, *J* = 6.9 Hz, 1 H, Ar-H), 7.39 (s, 1 H, Ar-H), 6.83 (d, *J* = 9.6 Hz, 1 H, Ar-H); ¹³C NMR (100 MHz, CD₃OD): δ = 138.2 (C), 136.1 (C), 134.3 (C), 134.1 (C), 133.9 (q, ²*J*_{C, F} = 35.6 Hz, C), 132.73 (CH), 132.71 (CH), 131.8 (CH), 131.3 (CH), 130.7 (CH), 130.3 (C), 129.4 (CH), 127.7 (q, ³*J*_{C, F} = 3.9 Hz, CH), 125.4 (CH), 125.3 (q, ¹*J*_{C, F} = 271.7 Hz, C), 122.3 (C), 120.4 (CH), 120.3 (CH), 114.8 (CH), 108.9 (CH); ¹⁹F NMR (376 MHz, CD₃OD): δ = -65.54 (3 F), -81.38 (3 F); IR (KBr) *v* =3134, 1325, 1279, 1138, 637 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₂H₁₄F₃N₂ [M–OTf]⁺: 363.1104, found 363.1097.

6-(3-Thienyl)pyrido[1',2';2,3]imidazo[5,1-*a*]isoquinolin-7-ium trifluoromethanesulfonate (**2f**) Yield: 224 mg (99%); Yellow prism (CH₃OH); mp 235–236 °C; R_f = 0.3 (CH₂Cl₂-CH₃OH, 10:1); ¹H NMR (400 MHz, CD₃OD): δ = 9.29 (s, 1 H, Ar-H), 9.06 (d, *J* = 6.2 Hz, 1 H, Ar-H), 8.51–8.46 (m, 1 H, Ar-H), 8.00–7.76 (m, 6 H, Ar-H), 7.67 (t, J = 6.7 Hz, 1 H, Ar-H), 7.41 (dd, J = 4.6, 0.9 Hz, 1 H, Ar-H), 7.37 (s, 1 H, Ar-H), 6.81 (d, J = 9.2 Hz, 1 H, Ar-H); ¹³C NMR (100 MHz, CD₃OD): $\delta = 134.9$ (C), 132.8 (C), 132.7 (C), 131.3 (CH), 131.1 (CH), 129.8 (C), 129.7 (CH), 129.2 (C), 129.1 (CH), 128.4 (CH), 128.34 (CH), 128.25 (CH), 127.8 (CH), 124.1 (CH), 120.8 (C), 118.9 (CH), 118.5 (CH), 113.4 (CH), 107.4 (CH); ¹⁹F NMR (376 MHz, CD₃OD): $\delta = -81.38$; IR (KBr) v = 3123, 1275, 1258, 1030, 640 cm⁻¹; HRMS (ESI): m/z calcd for C₁₉H₁₃N₂S [M–OTf]⁺: 301.0794, found 301.0788.

6-(1-Cyclohexenyl)pyrido[1',2';2,3]imidazo[5,1-a]isoquinolin-7-ium trifluoromethanesulfonate (2g)

Yield: 218 mg (97%); Colorless needle (CH₃OH); mp 270.5–272 °C; $R_f = 0.3$ (CH₂Cl₂-CH₃OH, 10:1); ¹H NMR (400 MHz, CD₃OD): $\delta = 9.23$ (s, 1 H, Ar-H), 9.07 (d, J = 6.4 Hz, 1 H, Ar-H), 8.42–8.37 (m, 2 H, Ar-H), 8.11 (t, J = 8.2 Hz, 1 H, Ar-H), 7.87 (d, J = 6.0 Hz, 1 H, Ar-H), 7.77–7.73 (m, 3 H, Ar-H), 7.19 (s, 1 H, Ar-H), 6.44 (s, 1 H, Ar-H), 2.44–2.29 (m, 4 H, Ar-H₂), 1.99–1.79 (m, 4 H, Ar-H₂); ¹³C NMR (100 MHz, CD₃OD): $\delta = 138.1$ (C), 135.8 (CH), 133.8 (C), 133.2 (C), 133.1 (CH), 132.5 (CH), 130.9 (C), 130.6 (CH), 130.5 (CH), 128.9 (CH), 125.3 (CH), 121.8 (C), 120.3 (CH), 117.7 (CH), 115.1 (CH), 108.6 (CH), 29.4 (CH₂), 26.4 (CH₂), 23.0 (CH₂), 22.4 (CH₂); ¹⁹F NMR (376 MHz, CD₃OD): $\delta = -81.36$; IR (KBr) $\nu = 3111$, 2943, 1285, 1032, 638 cm⁻¹; HRMS (ESI): *m/z* calcd for C₂₁H₁₉N₂ [M–OTf]⁺: 299.1543, found 299.1536.

6-(*n*-Butyl)pyrido[1',2';2,3]imidazo[5,1-*a*]isoquinolin-7-ium trifluoromethanesulfonate (2h)

Yield: 203 mg (95%); Pale yellow prism (CH₃OH); mp 206–207 °C; R_{*f*} = 0.3 (CH₂Cl₂-CH₃OH, 10:1); ¹H NMR (400 MHz, CD₃OD): δ = 9.17 (s, 1 H, Ar-H), 9.04 (d, *J* = 7.8 Hz, 1 H, Ar-H), 8.59 (d, *J* = 9.6 Hz, 1 H, Ar-H), 8.30–8.28 (m, 1 H, Ar-H), 8.11 (t, *J* = 7.3 Hz, 1 H, Ar-H), 7.78–7.62 (m, 4 H, Ar-H), 7.18 (s, 1 H, Ar-H), 3.42–3.30 (m, 2 H, CH₂), 1.94–1.86 (m, 2 H, CH₂), 1.71–1.62 (m, 2 H, CH₂), 1.09 (t, *J* = 7.3 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CD₃OD): δ =137.8 (C), 135.9 (C), 133.9 (C), 133.2 (CH), 132.4 (CH), 130.5 (CH), 130.4 (C), 130.1 (CH), 128.2 (CH), 124.9 (CH), 121.2 (C), 120.3 (CH), 116.2 (CH), 108.6 (CH), 33.8 (CH₂), 30.3 (CH₂), 23.1 (CH₂), 14.3 (CH₃); ¹⁹F NMR (376 MHz, CD₃OD): δ = -79.72; IR (KBr) *v* =3123, 2942, 1250, 1028, 637 cm⁻¹; HRMS (ESI): *m/z* calcd for C₁₉H₁₉N₂ [M–OTf]⁺: 275.1543, found 275.1538.

4. Single crystal X-ray diffraction experiment

The X-ray diffraction measurements of compounds **2b** were carried out using an XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer. The crystal was kept at 103 K during data collection. Using Olex2,² the structure was solved with the SHELXT³ structure solution program using Intrinsic Phasing and refined with the SHELXL⁴ refinement package using Least Squares minimization.

Crystal data and structure refinement.

The colorless plate crystal ($0.32 \times 0.272 \times 0.147 \text{ mm}^3$) of **2b** obtained from CH₂Cl₂/hexane. C₂₃H₁₇N₂O₃F₃S (M = 458.44 g/mol): triclinic, space group *P*-1 (no. 2), *a* = 7.5716(2) Å, *b* = 10.5701(3) Å, *c* = 13.3435(4) Å, *a* = 81.216(2)°, $\beta = 83.633(2)°$, $\gamma = 76.137(2)°$, V = 1021.57(5) Å³, Z = 2, T = 103 K, μ (Cu K α) = 1.919 mm⁻¹, $D_{calc} = 1.490$ g/cm³, 8540 reflections measured ($6.724° \le 2\Theta \le 136.664°$), 3708 unique ($R_{int} = 0.0321$, $R_{sigma} = 0.0310$) which were used in all calculations. The final R_1 was 0.0367 (I > 2 σ (I)) and wR_2 was 0.0986 (all data). CCDC 2324904 contains the supplementary crystallographic data which can be obtained free of charge from the Cambridge Crystallographic Data Center via https://www.ccdc.cam.ac.uk/structures/

5. Optical property of 2c

Figure S1: Normalized (a) absorption spectra and (b) fluorescence spectra of **2c** in MeOH, CH₂Cl₂ and HEPES buffer (same condition of staining solutions).

6. Cell culture and imaging

Cell culture

HeLa cells were cultured at 37°C in a humid atmosphere of 5% CO₂ in Eagle's MEM (minimum essential medium) supplemented with 10% fetal bovine serum (FBS).

Preparing stock solutions

To prepare a stock solution, dissolve the synthesized compounds **2a-h** in high-quality, anhydrous dimethylsulfoxide (DMSO) to a final concentration of 2 mM.

Preparing staining solutions

Dilute 2mM compounds **2a-h** (see Preparing stock solutions) to the final working concentration in appropriate buffer or growth medium.

Cell staining study

To investigate the cell staining efficiency of compounds 2a-h, cells were incubated with compounds 2a-h (2 μ M) in an observation chamber for 30 min and washed using HEPES buffer. The compounds 2a-h into cells were excited at 405 nm and fluorescence was detected by a band pass filter (400-590 nm) using a confocal laser scanning microscopy. The intracellular fluorescence intensity was measured by ZEN software (Zeiss).

Intracellular localization study

The cellular localization of compounds 2c was determined by the colocalization of organelle specific dyes including ER-Tracker Green (Endoplasmic reticulum specific dye), MitoTracker Green (Mitochondria specific dye) and LysoTracker Green (Lysosome specific dye). Cells were incubated with compounds 2c (2 µM) and organelle-specific dyes (concentration of each dye follows the protocol from suppliers) in an observation chamber for 30 min and washed using HEPES Buffer. The compounds 2c into cells were excited at 405 nm and fluorescence was detected by a band pass filter (400-495 nm) using a confocal laser scanning microscopy. ER-Tracker Green, MitoTracker Green and LysoTracker Green into cells were excited at 488 nm and fluorescence was detected by a band pass filter (400-590 nm).

Cytotoxicity assay

The cells cultured until they reached confluency were treated with compounds 2a-h (2 µM) for 30 min. The cytotoxic effects of the compounds on these cells were investigated using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay.

Statistical analysis

Tukey–Kramer's test and Dunnett's test were used to compare the differences between groups. Results were considered statistically significant at p < 0.05.

CCCP treatment

Hela cells treated with CCCP (100 μ M) for 1 h and untreated cells were incubated with compound **2c** for 30 min in an observation chamber. They then observed it with a confocal laser scanning microscope and compared the images obtained.

Figure S2. Cell viability was measured by MTT assay. HeLa cells incubated with 2a-h (2 μ M) at 37 °C for 30 min. Mean \pm SE, n = 6, **p<0.05 vs. no treatment (Dunnett's test)

Figure S3. CLSM images of HeLa cells incubated with 2a-h (2 μ M) and without compound for 30 min. Scale bar: 10 μ m.

Figure S4. HeLa cells incubated with 2c (2 µM) and fluorescence indicator at 37 °C for 30 min. Scale bar: 10 µm.

7. References

- 1. M. Kawakubo, Y. Inaguma, Y. Murata, M. Matsumura and Yasuike, *Tetrahedron Lett.*, 2022, 105, 154054.
- O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339– 341.
- 3. G.M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- 4. G.M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

8. Copies of ¹H and ¹³C NMR spectra of novel compounds

¹³C NMR of **2a**

¹⁹F NMR of **2a**

1 H NMR of **2b**

¹³C NMR of **2b**

$^{19}\mathrm{F}\ \mathrm{NMR}$ of $\mathbf{2b}$

1 H NMR of **2**c

$^{13}\mathrm{C}$ NMR of 2c

¹⁹F NMR of **2c**

¹H NMR of 2d

¹³C NMR of **2d**

$^{19}\mathrm{F}\ \mathrm{NMR}$ of $\mathbf{2d}$

¹H NMR of **2e**

¹³C NMR of **2e**

¹⁹F NMR of 2e

¹H NMR of 2g

¹³C NMR of **2h**