Supporting Information

Liquid metal-embedded 3D interconnected-porous

TPU\MXene composite with improved capacitive sensitivity

and pressure detection range

Zhong Zheng^a, Xing Fang^a, Yifan Pan^a, Shuyi Song^a, Huan Xue^a, Jun Li^a, Yi Li^b, Jing Li^{a,*}

^a Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of

Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China.

^b Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham

and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Fig S1. Schematic of construction of the as-proposed TMLS. (a) Exploded schematic illustration of a TMLS. Schematic illustration of (b) mechanical deformation behavior of TMLS during pressure loading.

Fig S2. The schematic diagrams of the chemical interaction between PMA and EGaIn.

Fig S3. FT-IR spectra of TPU, TPU/PMA composite foam, and TPU/PMA/EGaIn composite foam.

Fig S4. Comparison of TMLS and other capacitive pressure sensor counterparts. (a) Schematic illustration of the three conventional capacitive pressure sensors and TMLS (b) Pressure-capacitance variation curve of the four sensors. (c) Sensitivity comparison of the four sensors.

Ref.	Maximum Sensitivity (kPa ⁻¹)	Maximum	Minimum		
		detectable	Detection	Response/relaxation	Durability
		pressure	limit	time (ms)	(cycles)
		(kPa)			
This	1.91	260	10 Pa	60/110	4000
work					
[1]	0.49	11	20 Pa	30/30	300
[2]	1.21	28	0.9 Pa	100/100	10000
[3]	0.283	33	-	-	20000
[4]	0.141	100	0.16 g	190/210	1000
[5]	0.065	1700	-	100/100	7000
[6]	0.201	4500	-	60/30	1000
[7]	6.583	1	3 Pa	48/36	10000
[8]	0.37	115	-	84/105	7600
[9]	4.4	115	0.8 Pa	16/46	50000
[10]	0.854	2.1	1 Pa	-	-

Table S1 A comparison of the sensing performance of reported sensors¹⁻¹⁹.

[11]	2.1	70	1.3 Pa	50/50	3600
[12]	0.41	55	0.005g	33/33	1000
[13]	0.18	400	10 Pa	100/100	10000
[14]	0.159	145	-	49/51	9000
[15]	4.2	32	1.6 Pa	26/26	10000
[16]	4.05	100	0.6 Pa	26/52	14000
[17]	0.023	200	-	155/-	1000
[18]	0.124	150	-	167/117	1000
[19]	0.055	10	-	200/150	-

Reference

- 1. Z. H. Wang, Y. Si, C. Y. Zhao, D. Yu, W. Wang and G. Sun, *Acs Applied Materials & Interfaces*, 2019, **11**, 27200-27209.
- 2. S. F. Zhao, W. H. Ran, D. P. Wang, R. Y. Yin, Y. X. Yan, K. Jiang, Z. Lou and G. Z. Shen, *Acs Applied Materials & Interfaces*, 2020, **12**, 32023-32030.
- 3. R. H. Wu, L. Y. Ma, A. Patil, C. Hou, S. H. Zhu, X. W. Fan, H. Z. Lin, W. D. Yu, W. X. Guo and X. Y. Liu, *Acs Applied Materials & Interfaces*, 2019, **11**, 33336-33346.
- 4. S. Lee, S. Franklin, F. A. Hassani, T. Yokota, O. G. Nayeem, Y. Wang, R. Leib, G. Cheng, D. W. Franklin and T. Someya, *Science*, 2020, **370**, 966-+.
- 5. B. Ji, Q. Zhou, M. Lei, S. Ding, Q. Song, Y. Gao, S. Li, Y. Xu, Y. Zhou and B. Zhou, *Small*, 2021, **17**.
- 6. T. Y. Shao, J. N. Wu, Y. H. Zhang, Y. R. Cheng, Z. Q. Zuo, H. K. Lv, M. L. Ying, C. P. Wong and Z. Li, *Advanced Materials Technologies*, 2020, **5**.
- 7. H. S. Niu, S. Gao, W. J. Yue, Y. Li, W. J. Zhou and H. Liu, *Small*, 2020, 16.
- 8. A. Chhetry, S. Sharma, H. Yoon, S. Ko and J. Y. Park, *Advanced Functional Materials*, 2020, **30**.
- 9. M. Fu, J. M. Zhang, Y. M. Jin, Y. Zhao, S. Y. Huang and C. F. Guo, *Advanced Science*, 2020, **7**.
- 10. R. Y. Tay, H. L. Li, J. J. Lin, H. Wang, J. S. K. Lim, S. Chen, W. L. Leong, S. H. Tsang and E. H. T. Teo, *Advanced Functional Materials*, 2020, **30**.
- L. X. Mo, X. Y. Meng, J. Zhao, Y. Q. Pan, Z. C. Sun, Z. X. Guo, W. Wang, Z. C. Peng, C. Shang, S. B. Han, K. Hu, M. J. Cao, Y. J. Chen, Z. Q. Xin, J. S. Lu and L. H. Li, *Flexible and Printed Electronics*, 2021, 6.
- 12. Z. B. Luo, J. Chen, Z. F. Zhu, L. Li, Y. Su, W. Tang, O. M. Omisore, L. Wang and H. Li, *Acs Applied Materials & Interfaces*, 2021, **13**, 7635-7649.
- 13. J. Hwang, Y. Kim, H. Yang and J. H. Oh, Composites Part B-Engineering, 2021, 211, 9.
- 14. W. Asghar, F. L. Li, Y. L. Zhou, Y. Z. Wu, Z. Yu, S. B. Li, D. X. Tang, X. T. Han, J. Shang, Y. W. Liu and R. W. Li, *Advanced Materials Technologies*, 2020, **5**.
- 15. W. Yang, N. W. Li, S. Y. Zhao, Z. Q. Yuan, J. N. Wang, X. Y. Du, B. Wang, R. Cao, X. Y. Li, W. H. Xu, Z. L. Wang and C. J. Li, *Advanced Materials Technologies*, 2018, **3**.
- M. Su, J. T. Fu, Z. X. Liu, P. Li, G. J. Tai, P. S. Wang, L. Xie, X. Q. Liu, X. M. He, D. P. Wei and J. Yang, *Acs Applied Materials & Interfaces*, 2023, 15, 48683-48694.

- 17. S. M. Li, K. Dong, R. Q. Li, X. Y. Huang, T. J. Chen and X. L. Xiao, Sensors and Actuators a-Physical, 2020, **312**, 9.
- 18. Bijender and A. Kumar, *Acs Omega*, 2020, **5**, 16944-16950.
- 19. C. Mahata, H. Algadi, J. Lee, S. Kim and T. Lee, *Measurement*, 2020, 151.