Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Data

Tailoring NiCoCu Layered Double Hydroxide with Agcitrate/Polyaniline/functionalized SWCNTs nanocomposites for Supercapacitor Applications

Syed Muhammad Abdullah^a, Mohsin Ali Marwat^{a,*,1}, Kanwar Muhammad Adam^a, Zia Ud Din^a, Muhammad Humayun^b, Muhammad Ramzan Abdul Karim^a, Esha Ghazanfar^a, Mohamed Bououdina^b, Umaima Hamayun^a

- ^a Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Sciences and Technology, Topi, 23640, Pakistan
- ^b Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- ¹ Equal Contribution

^{*}Corresponding Author E-mail: mohsin.ali@giki.edu.pk, Tel: +92-938-281026, Fax: +92-938-281032

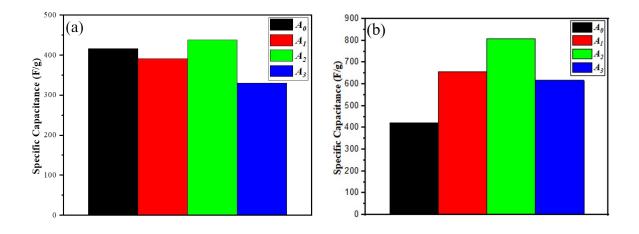


Fig S1 Specific Capacitance comparison of pristine A_0 and its composites A_1 , A_2 , and A_3 (a) calculated from CV at 10mV/s (b) calculated from GCD at 0.5 A/g.

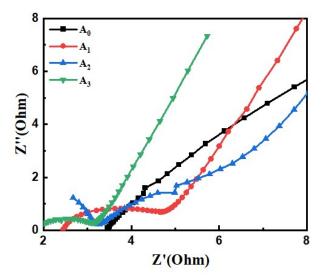


Fig S2 Magnified image of EIS Nyquist plot to visualize R_{ct} values and Warburg impedance slope of pristine A_0 and its composites A_1 , A_2 , and A_3 .



Fig S3 Galvanic charge-discharge of $A_2||AC|$ ASC device at different potential windows from 1.5 to 1.8 at a current density of 10 A/g.

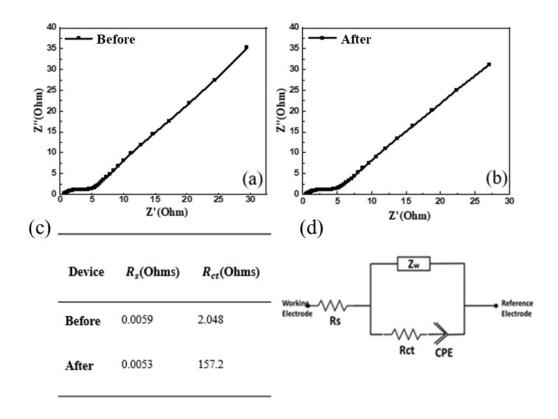


Fig S4 A₂||AC ASC device's EIS (a) before and (b) after cycling stability test for 4000 cycles of A₂||AC ASC device. (c) R_s and R_{ct} values before and after 4000 cycles. (d) Inscribed EIS circuit.