Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

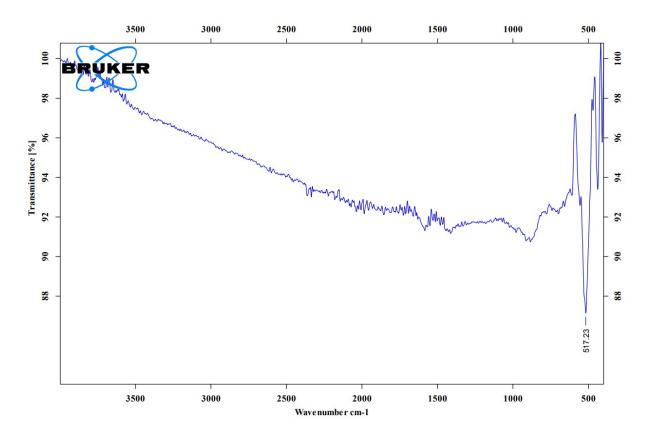
Enhanced Photocatalytic Efficiency of Porous ZnO Coral-like Nanoplates for Organic Dye Degradation

Nguyen Hong Hanh, *a Quan Thi Minh Nguyet, b Tran Van Chinh, c La Duc Duong, Tran Xuan Tien, d Lai Van

Duy, *e, f, g Nguyen Duc Hoae

^aInstitute of Engineering Physics, 17 Hoang Sam Street, Cau Giay District, Hanoi City, Vietnam.

^b School of Engineering Physics, Hanoi University of Science and Technology (HUST), No 1 Dai Co Viet Street, Hanoi City, Vietnam.


^c Institute of Chemistry and Materials, Inorganic Chemistry, 17 Hoang Sam Street, Cau Giay District, Hanoi City, Vietnam.

⁴Academy of Military Science and Technology, 17 Hoang Sam Street, Cau Giay District, Hanoi City, Vietnam.

^eInternational Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No 1, Dai Co Viet Street, Hanoi, Vietnam.

^t Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all' Adige, TN, Italy.

⁹ Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy.

Figure S1. FTIR spectrum of spent ZnO nanoplates after used as photocatalyst for RhB degradation.