Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Electrochemical sensing performance of two CuO nanomaterial-modified dual-working electrodes

Fengxia Chang,* Dan Wang, Zixian Pu, Jinhang Chen, and Jiong Tan School of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China

*Corresponding author, E-mail address: changfengxia@swun.edu.cn

Fig. S1 XRD patterns (A), Raman spectra (B) and XPS spectra of Cu 2p (C) of CuONSs and CuONCs.

Fig. S2 (A)CVs of 0.5 mM CT in PBS (pH 7.0) at GCE at different scan rates (a-p: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500 mV/s). (B) Linear diagrams of redox peak currents with $v^{1/2}$.

Fig.S3 CVs of 0.5 mM CT in PBS (pH 7.0) at GCE modified by various volumes of CuONSs (A) and CuONCs (B) suspension. Scan rate: 50 mV/s.

Fig. S4 CV results of 0.5 mM CT in 0.1 M PBS of different pH (From left to right: 8.0, 7.0, 6.0, 5.0, 4.0, 3.0) at unmodified GCE. Scan rate: 50 mV/s.

Fig.S5. (A) The LSV oxidation peak currents of 0.1 mM CT solution containing 10-fold of interferences. (B) The ratio of oxidation peak current recorded intermittently (every two days) with the original oxidation peak current of 0.1 mM CT. The supporting electrolyte is 0.1 M PBS (pH 7.0). Three parallel experiments were conducted for each peak current.

Fig. S6 The size distribution of the CuONSs (A) and CuONCs (B) at different pH.

Table S1 Oxidation peak potential and current of 0.5 mM CT at unmodified GCE, CuONSs/GCE and CuONCs/GCE

Electrode	peak potential	RSD (%)	peak current	RSD (%)
	(V)	(n=4)	(μA)	(n=4)
unmodified GCE 1	0.45	0.1	6.42	0.8
unmodified GCE 2	0.45	0.1	6.41	0.8
CuONSs/GCE	0.40	0.2	13.8	1.2
CuONCs/GCE	0.36	0.2	16.9	1.0

Table S2 CT detection results in water samples

	CuONSs/GCE			CuONCs/GCE				
	Added	Found	Recovery	RSD (%)	Added	Found	Recovery	RSD (%)
	(μM)	(μM)	(%)	(n=3)	(μM)	(μM)	(%)	(n=3)
Ton westen	80.0	78.3	97.8	1.9	80.0	78.4	98.0	1.8
Tap water	500	486	97.2	2.2	500	485	97.0	2.3
Yingyuetan	80.0	78.0	97.5	1.8	80.0	77.8	97.2	1.9
lake water	500	483	96.6	2.0	500	482	96.4	2.2

Table S3 Fitted parameters of charge transfer resistance (R_{ct}) of different electrodes.

Electrode	$R_{\rm ct}\left({ m k}\Omega ight)$	standard error (%)
GCE	0.81	2.1
CuONSs/GCE	1.42	3.0
CuONCs/GCE	1.26	3.4