Supplementary Information

Synergistic effect between In_2O_3 and ZrO_2 in reverse water gas shift reaction

Jiayu Dong^a, Hong Wang^c, Guofeng Zhao^{b,*}, Dong Jiang^{a,*}, Haitao Xu^{a,*}

^aSchool of Chemical Engineering, East China University of Science and Technology,

Shanghai 200237, China

^aSchool of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

^bKey Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China ^cInstitute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China *Corresponding authors. E-mail addresses: gfzhao@chem.ecnu.edu.cn (G. Zhao); jiangdong@ecust.edu.cn (D. Jiang); xuhaitao@ecust.edu.cn (H. Xu)

Catalyst	In ₂ O ₃ content ^a	ZrO ₂ content ^a	Porous properties ^b	
	Measured (mol %)	Measured (mol %)	S_{BET} (m ² ·g ⁻¹)	D _{pore} (nm)
100In ₂ O ₃ -0ZrO ₂	100	0	55	38
$75In_2O_3$ - $25ZrO_2$	73.6	26.4	60	25
$50In_2O_3$ - $50ZrO_2$	47.6	52.4	71	15
25In ₂ O ₃ -75ZrO ₂	23.9	76.2	68	7
0In ₂ O ₃ -100ZrO ₂	0	100	55	10

 Table S1 Metal contents and textural properties of In2O3-ZrO2 catalysts

^aDetermined by ICP.

^{*b*}Measured by N_2 desorption.

Table 52 Table 52 Table 52 and O_v contents of m_2O_3 2102 catalysis					
Catalyst	D (nm) ^{<i>a</i>}	$O_v \operatorname{content}^b$			
100In ₂ O ₃ -0ZrO ₂	15	-			
75In ₂ O ₃ -25ZrO ₂	11	39.8%			
50In ₂ O ₃ -50ZrO ₂	10	17.4%			
25In ₂ O ₃ -75ZrO ₂	11	6.5%			
0In ₂ O ₃ -100ZrO ₂	11	-			

 Table S2 Particle sizes and Ov contents of In2O3-ZrO2 catalysts

^{*a*}Calculated by $In_2O_3(222)$ or $ZrO_2(111)$ peaks using Scherrer equation. ^{*b*}Measured by XPS.

Catalyst	T(°C)	P(MPa)	H ₂ /CO ₂	X _{CO2} (%)	S _{CO} (%)	STY	Ref
In ₂ O ₃ -CeO ₂	400	0.1	1:1	5.34	100	0.77	1
Cu5In5/CeO ₂	400	0.1	4:1	20	100	0.54	2
$Cu5In5/ZrO_2$	400	0.1	4:1	<5	100	< 0.14	2
Ni/ZrO ₂ -80	400	0.1	4:1	<10	100	0.41	3
Cs-Fe _x C-co	400	0.1	4:1	36	59	0.76	4
10%Cu- 5%Fe/CeO ₂	450	0.1	1:1	25	100	0.18	5
Cu-Ni/γ-Al ₂ O ₃	500	0.1	1:1	23.2	75.5	0.11	6
Au/ZrO_2	350	0.3	3:1	~6	100	0.09	7
Au/Al_2O_3	350	0.1	5:1	20	>99	0.24	8
Ag/Al ₂ O ₃	600	0.1	3:1	14	100	0.8	9
75In ₂ O ₃ -25ZrO ₂	400	0.1	3:1	28	96	0.81	this work

Table S3 Comparison of catalysts used in RWGS reaction

		Vibration	Frequency (cm ⁻¹)		
Surface species		mode	Wavenumber	Ref	
			(cm ⁻¹)		
Bidentate formate	bi-HCOO*	$v_{as}(CH)$	2969	10	
			2965	11	
			2969	12	
		v _s (CH)	2869	10	
			2872	11	
			2876	12	
		$v_{as}(OCO)$	1561-1581	11, 13-18	
			1583	19	
			1585	10	
			1588	12	
		$v_{s}(OCO)$	1346	11	
			1356-1359	16, 18	
Monodentate formate	m-HCOO*	v _s (OCO)	1255	20	
			1285	12	
			1295	19	
			1298	14	
Bridged methoxy	b-*OCH ₃	$v_{as}(CH_3)$	2931	10	
			2926	16	
			2928	12	
		$v_{s}(CH_{3})$	2836	10	
			2820	16	
			2825	12	
		v(CO)	1140-1150	12, 18-20	
Bidentate bicarbonate	bi-HCO ₃	$v_{as}(CO_3)$	1620	21	
			1630	14	
			1636-1650	22	
		δ(OH)	1225	14, 21	
			1225-1236	22	
Monodentate carbonate	$m-CO_3^{2-}$	$v_{as}(CO_3)$	1355	21	
			1368	22	
Bidentate carbonate	bi-CO32-	$v_{as}(CO_3)$	1555	21	
			1563	23	
Polydentate carbonate	p-CO ₃ ²⁻	$v_{as}(CO_3)$	1460	14	
	•		1474	13	
		$v_{s}(CO_{3})$	1405	23	
		/	1406	14	
Carbon monoxide	СО		2077, 2130	23	
			2115	10	
			2129	19	
Methane	CH ₄		3016	24, 25	

Table S4 Assignment of absorbance peaks observed in the *in-situ* FTIR

Figure S1 (a) N_2 adsorption-desorption isothermal curves and (b) pore size distribution of In_2O_3 -ZrO₂ catalysts.

The N_2 adsorption and desorption curves of all catalysts belong to IV adsorption isotherms, which indicates the mesoporous structure (Fig. S1a). Fig. S1b. shows the pore diameter distribution of the catalysts. As can be observed, all catalysts exhibit maxima in the mesoporous region.

Figure S2 TEM images and particle size distributions of (a) $100In_2O_3-0ZrO_2$, (b) $75In_2O_3-25ZrO_2$, (c) $50In_2O_3-50ZrO_2$, (d) $25In_2O_3-75ZrO_2$, and (e) $0In_2O_3-100ZrO_2$ catalysts.

Figure S3 (a) HAADF-STEM image, (b) high-resolution TEM image and (c, d) corresponding energy-dispersive X-ray (EDX) elemental mappings of 75In₂O₃-25ZrO₂ catalyst.

Figure S4 (a) XRD patterns and (b) enlarged parts (28-32°) of In₂O₃-ZrO₂ catalysts.

Figure S5 The relationship diagram of CO STY and oxygen vacancy concentration of In_2O_3 -ZrO₂ catalysts.

As shown in Fig. S5, the oxygen vacancy concentration of $25In_2O_3$ -75ZrO₂, $50In_2O_3$ -50ZrO₂ and $75In_2O_3$ -25ZrO₂ is 6.5%, 17.4% and 39.8%, respectively. And the corresponding STY (space-time yield) is 0.4, 0.7 and 0.8, respectively. The STY of the In_2O_3 -ZrO₂ catalyst has a positive correlation with the oxygen vacancy concentration.

Figure S6 EPR spectra for $75In_2O_3$ - $25ZrO_2$, In_2O_3 and ZrO_2 .

Fig. S7 (a) H₂-TPR profiles and (b) CO₂-TPD profiles of In_2O_3 , ZrO_2 and $75In_2O_3$ -

 $25ZrO_2$ catalyst.

Figure S8 The influence of GHSV on the catalytic performance of $75In_2O_3-25ZrO_2$ (reaction conditions: 400 °C, H₂: CO₂: Ar ratio = 72: 24: 4, 0.1 MPa).

Figure S9 *In-situ* FTIR spectra of the reaction of CO₂ and H₂ over (a) 75In₂O₃-25ZrO₂, (b) In₂O₃, and (c) ZrO₂ (reaction conditions: 400 °C, 0.5MPa).

Scheme S1 Reaction mechanism catalyzed by $75In_2O_3$ - $25ZrO_2$.

Reference

- W. Wang, Y. Zhang, Z. Wang, J.-m. Yan, Q. Ge and C.-J. Liu, Catal. Today, 2016,
 259, 402-408.
- M. Li, T.H.M. Pham, Y. Ko, K. Zhao, L. Zhong, W. Luo and A. Zutte, ACS
 Sustain. Chem. Eng., 2022, 10, 1524-1535.
- 3 Z. Zhang, Y. Zang, F. Gao, J. Qu, J. Gu and X. Lin, New J. Chem., 2022, **46**, 22332-22340.
- 4 Q. Zhang, L. Pastor-Perez, Q. Wang and T.R. Reina, J. Energy Chem., 2022, 66, 635-646.
- 5 L. Chen, D. Wu, C. Wang, M. Ji and Z. Wu, J. Environ. Chem. Eng., 2021, 9, 105183.
- 6 Y. Liu and D.Z. Liu, Int. J. Hydrog. Energy, 1999, 24, 351-354.
- A.I.M. Rabee, D. Zhao, S. Cisneros, C.R. Kreyenschulte, V. Kondratenko, S.
 Bartling, C. Kubis, E.V. Kondratenko, A. Brueckner and J. Rabeah, Appl. Catal.
 B-Environ., 2023, 321, 122083.
- 8 N. Ishito, K. Hara, K. Nakajima and A. Fukuoka, J. Energy Chem., 2016, 25, 306-310.
- 9 S. Choi, B.-I. Sang, J. Hong, K.J. Yoon, J.-W. Son, J.-H. Lee, B.-K. Kim and H. Kim, Sci Rep, 2017, 7, 41207.
- 10 W. Wang, Z. Qu, L. Song and Q. Fu, J. Energy Chem., 2020, 40, 22-30.
- S.S. Dang, B. Qin, Y. Yang, H. Wang, J. Cai, Y. Han, S.G. Li, P. Gao and Y.H.
 Sun, Sci. Adv., 2020, 6, eaaz2060.
- 12 Y. Wei, F. Liu, J. Ma, C. Yang, X. Wang and J. Cao, Mol. Catal., 2022, 525,

112354.

- 13 L. Lin, S. Yao, Z. Liu, F. Zhang, N. Li, D. Vovchok, A. Martínez-Arias, R. Castañeda, J. Lin, S.D. Senanayake, D. Su, D. Ma and J.A. Rodriguez, J. Phys. Chem. C, 2018, **122**, 12934-12943.
- 14 S. Collins, M. Baltanas and A. Bonivardi, J. Catal., 2004, 226, 410-421.
- 15 F. Ouyang, J.N. Kondo, K. Maruya and K. Domen, Catal. Lett., 1998, 50, 179-181.
- S. Kattel, B. Yan, Y. Yang, J.G. Chen and P. Liu, J. Am. Chem. Soc., 2016, 138, 12440-12450.
- 17 C. Yang, C. Pei, R. Luo, S. Liu, Y. Wang, Z. Wang, Z.-J. Zhao and J. Gong, J. Am. Chem. Soc., 2020, 142, 19523-19531.
- T.-y. Chen, C. Cao, T.-b. Chen, X. Ding, H. Huang, L. Shen, X. Cao, M. Zhu, J.
 Xu, J. Gao and Y.-F. Han, ACS Catal., 2019, 9, 8785-8797.
- 19 W. Wang, Z. Qu, L. Song and Q. Fu, J. Catal., 2020, 382, 129-140.
- 20 B. Liu, T. Fang and Y. He, Catal. Sci. Technol., 2022, **12**, 300-309.
- 21 K. Pokrovski, K.T. Jung and A.T. Bell, Langmuir, 2001, 17, 4297-4303.
- Y. Wang, L. Zhu, Y. Liu, E.I. Vovk, J. Lang, Z. Zhou, P. Gao, S. Li and Y. Yang,
 Appl. Surf. Sci., 2023, 631, 157534.
- 23 L.Z. Gao and C.T. Au, J. Catal., 2000, 189, 1-15.
- 24 G.C. Cabilla, A.L. Bonivardi and M.A. Baltanás, J. Catal., 2001, 201, 213-220.
- 25 C.Y. Regalado Vera, N. Manavi, Z. Zhou, L.-C. Wang, W. Diao, S. Karakalos, B. Liu, K.J. Stowers, M. Zhou, H. Luo and D. Ding, Chem. Eng. J., 2021, 426, 131767.