Supporting Information

for

The influence of hydrogen bonding on the structure of organicinorganic hybrid catalysts and its application in the solvent-free

epoxidation of α-olefins

Fig.S1. Curves of standard samples by Gas chromatographic, (a) 1-dodecene, (b) dodecane epoxide

Table S1. Catalytic reaction of different olefins

Substrate	Product	Selectivity/%	Conversion/%
	\checkmark	80.8	26.2
	\checkmark	90.5	29.8
	\checkmark	93.4	35.8
		92.1	28

Fig.S2. FT-IR spectra of DDC; 3437 cm⁻¹ (O-H stretching vibration), 2921 cm⁻¹ (C-H asymmetrical stretching vibration), 2853 cm⁻¹ (C-H stretching

vibration), 1469cm⁻¹(C-N stretching vibration), 1403 cm⁻¹ (-CH₂- bending vibration)

Fig.S3. The SEM of $P_2W_{18}\mbox{-}DDC$ (a) $2\mu m,$ (b) $1\mu m,$ (c) 500nm, (d) 200nm

Fig.S4. The SEM of $PW_{12}\mbox{-}DDC$ (a) $2\mu m,$ (b) $1\mu m,$ (c) 500nm, (d) 200nm

	P:N	P:W
P ₂ W ₁₈ -DDC	4:9	2:11
P_2W_{18} -DDC (In theory)	1:3	1:3
PW ₁₂ -DDC	1:8	1:10
PW ₁₂ -DDC (In theory)	2:3	1:4

Table.S2. Molar ratio of P:N and P:W in two catalysts

Fig.S5. The SEM of used $P_2W_{18}\text{-}DDC$ (unwashed) (a) $2\mu\text{m},$ (b) $1\mu\text{m},$ (c) 500nm, (d) 200nm

Fig.S6. The SEM of used $P_2W_{18}\mbox{-}DDC$ (washed) (a) $2\mu m$, (b) $1\mu m$, (c) 500nm, (d) 200nm

Fig.S7. The SEM of used PW12-DDC (washed) (a) $2\mu m,$ (b) $1\mu m,$ (c) 500nm, (d) 200nm

Fig.S8. (a) the C1s XPS spectra of PW_{12} -DDC, (b) the C1s XPS spectra of used PW_{12} -DDC, (c) the C1s XPS spectra of P_2W_{18} -DDC, (d) the C1s XPS spectra of used P_2W_{18} -DDC

Fig.S9. (a) the O1s XPS spectra of used PW12-DDC, (b) the W4f XPS spectra of used PW12-DDC, (c) the O1s XPS spectra of used P2W18-DDC, (d)

the W4f XPS spectra of used P_2W_{18} -DDC

Fig.S10. (a) UV-Vis spectra of P_2W_{18} -DDC, (b) UV-Vis spectra of PW_{12} -DDC

Fig.S11. Raman spectra of $\rm H_{3}PW_{12}O_{40}$