Electronic Supplementary Information (ESI)

Ambient Stable Solution-Processed Organic Field Effect Transistors from Electron Deficient Planar Aromatics: Effect of End-groups on Ambient Stability

Indrajit Giri,^a Sagar Biswas,^a Shant Chhetri,^a Anwesha Choudhuri,^b Indrajit Mondal,^c Satyaprasad P. Senanayak,^c Parameswar Krishnan Iyer,^{b*} Debangshu Chaudhuri,^a Ratheesh K. Vijayaraghavan^{a*}

^a Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India-741246.

^b Centre for Nanotechnology, Inian Institute of Technology Guwahati, Assam, India-781039.

^c Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research, OCC of HBNI, Odisha, India-752050.

Email: pki@iitg.ac.in, ratheesh@iiserkol.ac.in

	Table of Contents	Page No
1.	Characterization data	3-6
2.	Computational calculations	7
3.	Cyclic voltammogram measurement	7
4.	Substrates wettability test	8
5.	Device fabrication through Physical Vapor Deposition	8-10
6.	Single crystal structure	10-12
7.	Film morphology analysis	13
8.	Film state-wide angle X-ray diffraction and 2D GIXRD	13
9.	Contact angle measurement	14
10.	FTIR Measurements	15
11.	References	15

1. Characterization data:

NMR data:

Figure S1. ¹H NMR spectrum of EHNDIBr₂ in CDCl₃.

Figure S2. ¹³C NMR spectrum of EHNDIBr₂ in CDCl₃.

Figure S3. ¹H NMR spectrum of EHNDICN₂ in CDCl₃.

Figure S4. ¹³C NMR spectrum of EHNDICN₂ in CDCl₃.

Figure S5. ¹H NMR spectrum of NDIFBr₂ in CDCl₃.

Figure S6. ¹H NMR spectrum of NDIFCN₂ in CDCl₃.

Figure S7. ¹³C NMR spectrum of $EHNDICN_2$ in $CDCI_3$.

2. Computational calculations:

Figure S8. HOMO and LUMO levels and the orbital distribution diagram from DFT calculation: (a) **EHNDICN**₂ and (b) **NDICN**₂.

3. Cyclic voltammetry (CV):

CV was carried out with the CHI604D instrument. CV for liquid state samples was determined at room temperature using 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) in dry CH_2CI_2 solvent under nitrogen atmosphere with a scan rate of 100 mV/s, where gold wire used as the working electrode; platinum wire as the counter electrode; Ag/AgCl (saturated KCl) as the reference electrode. LUMO energy levels of the compounds were calculated according to the inner reference ferrocene redox couple

versus Ag/Ag⁺ in CH₂Cl₂ by using the formula
$$E_{LUMO} = -\left[\frac{E_{red}^{onset}}{Red} + 4.8 - \frac{E_{red}^{1/2}}{Re}\right]$$
.

4. Substrates wettability test:

Figure S9. Substrate wettability: a drop solution of $NDIFCN_2$ in *o*-DCB on (a) *n*-OTS treated Si/SiO₂, (b) Bare Si/SiO₂. (c) **EHNDICN₂** in CHCl₃ on *n*-OTS treated Si/SiO₂.

5. Device fabrication procedure (thermal vapor deposited) active layer:

For **EHNDICN**₂, a bottom gate top contact geometry was used. The glass substrates were cleaned by dipping the substrates in piranha solution for 1 hour followed by rinsing in DI water and drying. 100 nm of aluminum was thermally deposited on the cleaned glass substrates to form the gate electrode of width 1 mm by shadow masking on a glass substrate. A solution of PVA in DI water (100 mg ml⁻¹) was prepared and spin-coated with 1000 rpm for 30 s on the gate deposited substrate and dried at 100 °C for 1 hour to form 1 µm thick layer. PVA acts as the first dielectric, over which a 100 nm (3000 rpm 30 s) thick second dielectric layer (PMMA) is coated and dried at 100 °C for 1 hour. After the deposited by thermal deposition at a temperature of 250 °C under a base pressure of 10^{-6} mbar at substrate temperature of 60 °C. Further, Al source–drain electrodes were thermally deposited using shadow masking to form a channel of length (L) 40 µm and width (W) 0.8 mm.

For **NDIFCN**₂, a bottom contact top gate geometry was used. To extract the optimized charge transport properties, we also fabricated FETs for the same molecules using a vapor deposition technique. The semiconducting films were grown on lithographically patterned 25 nm thick Cr/Au S-D electrode. This was followed by vapor-deposition of the thin films of **NDIFCN**₂ at 10⁻⁶ Torr, at a rate of 0.2 Å/s to achieve film thickness of up to 40 nm. The temperature of the substrate was set at room temperature during the process of deposition. All the measurements were performed using a semiconductor parameter analyzer B1500.

Figure S10. Transfer curves (a) & (c) and output curves (b) & (d) for NDIFCN₂ & EHNDICN₂ respectively for the devices made of Physical Vapor Deposition (PVD) method.

Figure S11. Transfer curves of the air-exposed devices at various intervals of time: a) **NDIFCN**₂ and b) **EHNDICN**₂. (D = Day).

6. Single crystal structure:

Single crystals of EHNDICN₂ were obtained from chloroform and o-dichlorobenzene solvent mixture by slow solvent evaporation and for NDIFCN₂, the solvent mixture was chloroform and ethyl acetate. NDIFCN₂ recrystallizes in the monoclinic space group of P2₁/c and EHNDICN₂ as in the triclinic space group of $P^{\overline{1}}$. A non-classical hydrogen bonding ($d_{C-H\cdots O}$ = 2.36 Å) and C-H interaction ($d_{C-H\cdots C}$ = 2.86 Å) are the major interactions that control the overall crystal packing of EHNDICN₂. There is slipped packing of the π -conjugated core with an inter-planar 3.34 Å π -stacking distance between two **EHNDICN**₂ molecules. The low crystal packing density (1.3 g cm⁻³) and the slipping angle along the long molecular axis is 67.09° and the short is 40.30° which indicates the low π - π overlapping between the molecules (figure S10c) and it reflects on the charge carrier mobility as low. In the case of **NDIFCN**₂, along with non-classical hydrogen bonding ($d_{C-H-O} = 2.62$ Å), H-F ($d_{C-H-F} = 2.57$, 2.61 Å) and F-F interactions $(d_{C-F-F} = 2.85 \text{ Å})$ are the major interactions in the crystal packing (figure S11b). Including these interactions, strong C-F interactions (d_{C-F-C} = 2.90, 3.13 and 3.14 Å) help to pack with a high packing density (1.95 g cm⁻³) in its crystal packing. Although having a high packing density, there is almost no direct π - π overlap between the two NDIFCN₂ molecules. In figure S10b, it is visible that there is the incorporation of a fluroalkyl chain through the π - π stacking direction. It prevents the π core-overlapping and

smooth charge transporting. As a result, we are observing even lower charge carrier mobility than **EHNDICN**₂.

Figure S12. Single crystal structures with π stacking directions: (a), (c) for **EHNDICN**₂ and (b), (d) for **NDIFCN**₂ respectively (Black dotted arrow indicates charge transport direction).

Figure S13. Major interactions in the crystal state packing: a) EHNDICN₂ & b) NDIFCN₂.

X-Ray Crystallographic Analysis:

	EHNDICN ₂	NDIFCN ₂
Chemical formula	C32 H34 N4 O4	C24 H6 F14 N4 O4
Crystal System	triclinic	monoclinic
Space Group	PĪ	P 1 21/c 1
a (Å)	5.3597	9.6378
b (Å)	8.2900	13.1727
c (Å)	15.7629	10.2479
α (°)	99.995	90
β (°)	93.825	117.064
γ (°)	95.201	90
V (Å ³)	684.48	1158.57
Z	1	4
D (g cm ⁻³)	1.307	1.950
R ₁ (%)	9.67	3.39

Table S1. Crystallographic data obtained from single crystal XRD experiment.

NDIFCN ₂	distance (Å)	EHNDICN ₂	distance (Å)
H9B-F13	2.569	O001-C00K	3.12
F17-F14	2.85	C00C-C006	3.38
F17-C22	3.14	N004-H4B	2.58
H3-O21	2.623	N004-H00C	2.74
H3-F16	2.615	H00B-O002	2.36
C3-F16	2.896	O001-H00Q	2.35
F18-H9A	2.618		
C22-F17	3.14		
C5-F15	3.13		

X-Ray Crystallographic interactions.

Table S2. Different types of non-classical interactions and their distances in their crystalstate packing.

7. Film morphology analysis:

An atomic force microscopy experiment was carried out on NT-MDT (model no. AP-0100) in semi-contact mode. The morphology of the surfaces was investigated using field emission scanning electron microscopy (FE-SEM). The images were taken using an FE-SEM apparatus (ZEISS scanning microscope-ZSM-S 55 VP). The samples were prepared by keeping the conditions the same as device fabrication. For the spin-coated film, the roughness measured from AFM measurement is 2.4 and 2.8 nm, for NDIFCN₂ and EHNDICN₂ respectively. Low roughness indicates the smoothness of the films.

8. Film state-wide angle X-ray diffraction (WAXRD) and 2D grazing incident XRD (2D GIXRD):

Film state-wide angle X-ray diffraction (WAXRD) measurements were conducted for **EHNDICN**₂ on OTS-modified SiO₂ and **NDIFCN**₂ on bare SiO₂ substrates. A solution of **EHNDICN**₂ was prepared in Chloroform (5 g L⁻¹) at 45 °C and **NDIFCN**₂, a solution of 4-5 g L⁻¹ in o-dichlorobenzene (*o*-DCB) was prepared at 120 °C and stirring condition. For **NDIFCN**₂, the film was made by drop casting and for **EHNDICN**₂, the film was made by spin coating with 1500 rpm spin speed for 40 s. The substrates were further subjected to thermal annealing at 120 °C for 10 minutes and then transferred to a vacuum desiccator. For 2D XRD measurements, samples were prepared on top of glass substrate keeping the device fabrication conditions same.

Figure S14. 2D GIXRD pattern (a) EHNDICN2, (b) NDIFCN2.

9. Contact angle measurement:

For water contact angle measurement, we made the film on top of Si/SiO₂ substrates keeping all the conditions the same as device fabrications. The greater contact angle of **NDIFCN**₂ (108 °) than **EHNDICN**₂ (94 °) indicates the higher hydrophobicity in the case of the fluorinated alkyl chain containing **NDI**. As a result, we observed the higher ambient stable device in the case of **NDIFCN**₂. Contact angle measurements were repeated, with the same drops left on the substrates for a duration. Results showed that for **NDIFCN**₂, there was scarcely any change in the contact angle even after 150 seconds, with a marginal decrease from 108 ° to 105 °. Conversely, **EHNDICN**₂ exhibited a significant alteration in contact angle after just 50 seconds, decreasing from 94 ° to 75 °. These findings indicate the superior hydrophobicity of **NDIFCN**₂ compared to **EHNDICN**₂. Live video was also added.

Figure S15. The contact angle of a water droplet on the thin films of a) **NDIFCN**₂ and b) **EHNDICN**₂, over a period of seconds.

10. FTIR Spectroscopy Measurements:

For FTIR spectroscopy, the compound was drop-casted from a chloroform solution onto an IR fused quartz substrate. Subsequently, it was annealed at 120 °C for 10 minutes and then placed in a vacuum desiccator overnight. Measurements were conducted on day 1, day 7, and day 30.

Figure S16. FTIR spectroscopy of (a) EHNDICN₂ and (b) NDIFCN₂ films exposed to ambient atmosphere for 30 days.

11. References:

 B. A. Jones, A. Facchetti, T. J. Marks and M. R. Wasielewski, *Chem. Mater.*, 2007, 19, 2703–2705.