Supplementary Material

Investigation of bioactive components responsible for the antibacterial and anti-biofilm activities of *Caroxylon volkensii* by LC-QTOF-MS/MS analysis and molecular docking

Mai H. ElNaggar,^{*a} Usama Ramadan Abdelmohsen,^{b,c} Fatma M. Abdel Bar,^{d,e} Amal Abo Kamer,^f Gerhard Bringmann,^g and Engy Elekhnawy^f

^a Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.

^b Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.

^c Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 61111 New Minia, Egypt.

^d Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.

^e Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.

^f Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt. ^g Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.

*Author for correspondence: Mai ElNaggar

Email: mai_elnaggar@pharm.kfs.edu.eg

Page **Table of Contents** 3-9 Table S1. List of compounds identified by LC-MS/MS in the methanolic extract of Caroxylon volkensii (CVM). Figure S1. Total ion chromatogram (TIC) from LC/MS-Q-TOF analysis of the crude methanol extract of Caroxylon 10 volkensii presenting the labels of the identified compounds in positive ESI ion mode. Figure S2. Total ion chromatogram (TIC) from LC/MS-Q-TOF analysis of the crude methanol extract of Caroxylon 11 volkensii presenting the labels of the identified compounds in negative ESI ion mode. Figure S3. Total ion chromatogram (TIC) from LC/MS-Q-TOF analysis of the crude methanol extract of Caroxylon 12 volkensii presenting the labels of the identified compounds in expanded view (R_t 61.0-72.5 min) in the negative ESI ion mode. 13 Figure S4. ESI-MS/MS spectrum of salsolinol (1.1). 14 Figure S5. ESI-MS/MS spectrum of tyramine (1.6). 15 Figure S6. ESI-MS/MS spectrum of *N*-methyltyramine (1.7). Figure S7. ESI-MS/MS spectrum of N,N-dimethyltyramine (hordenine) (1.8). 16 17 Figure S8. ESI-MS/MS spectrum of N-methyloctopamine (synephrine) (1.10). 18 Figure S9. ESI-MS/MS spectrum of tyramine- $O-\beta$ -D-glucoside (1.11). 19 Figure S10. ESI-MS/MS spectrum of *N*-methyltyramine-O- β -D-glucoside (1.12). Figure S11. ESI-MS/MS spectrum of (E)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-methoxyphenethyl)acrylamide 20 (1.23). 21 Figure S12. ESI-MS/MS spectrum of *N-trans*-feruloyl 3-O-methyldopamine (1.25). 22 Figure S13. ESI-MS/MS spectrum of 4^{```}-O- β -D-glucopyranosyl-caffeoyltyramine (1.27). Figure S14. Expansion of the ESI-MS/MS spectrum of $4^{\circ\circ}-O-\beta$ -D-glucopyranosyl-caffeoyltyramine (1.27). 23 Figure S15. ESI-MS/MS spectrum of allantoic acid ethyl ester (1.29). 24 25 Figure S16. ESI-MS/MS spectrum of 3-(4-hydroxyphenyl)-2 (sulfooxy)propanoic acid (tichocarpol A) (2.4). 26 Figure S17. ESI-MS/MS spectrum of ethyl-p-digallate (2.7). Figure S18. ESI-MS/MS spectrum of N-cyclohexanecarbonylpentadecylamine (6.3). 27 Figure S19. Docking validation of the co-crystallized ligand, 3-oxo-C12 acylhomoserine lactone (AHL, cyan), and 28 the redocked ligand (pink) showing an RMSD value of 0.576 Å Figure S20. Molecular binding to the transcriptional activator receptor (LasR, PDB code: 2UVO) visualized in both

3D and 2D forms for compounds: (*E*)-3-(4-hydroxy-3-methoxyphenyl)-*N*-(4-methoxyphenethyl)acrylamide (**1.23**) (A and B); *N*-trans-feruloyl 3-*O*-methyldopamine (**1.25**) (C and D); ethyl-*p*-digallate (**2.7**) (E and F); isorhamnetin (**4.1**) (G and H) demonstrating *Las*R amino acid residues involved in the interaction.

Table S1. List of compounds identified by LC-MS/MS in the methanolic extract of Caroxylon volkensii (CVM).

No.	Name	Formula	Polarity	Rt	m/z	Observed MW	Theoretical MW	Mass error (ppm)	Peak area	MS/MS fragment ions	Source (reference)
1.	Alkaloids and nitrogenous compound	ls									
1.1	Salsolinol	C ₁₀ H ₁₃ NO ₂	Р	24.11	180.10265	179.095	179.09463	4.128	2.69E+07		Cocoa powder ¹
1.2	Salsoline	C ₁₁ H ₁₅ NO ₂	Р	28.45	194.1163	193.109	193.1103	-6.42	3.06E+07		Salsola kali, S. longifolia, S. tragus, S. oppositifolia, and S. soda ²⁻⁶
1.3.1	N-Methylisosalsolidine	C ₁₂ H ₁₇ NO ₂	Р	15.67	208.1311	207.124	207.1259	-10.01	1.14E+07		Salsola oppositofolia, S. soda and S. tragus ⁶
1.3.2	Salsolidine	C ₁₂ H ₁₇ NO ₂	Р	15.67	208.1311	207.124	207.1259	-10.01	1.14E+07		Salsola oppositofolia, S. soda and S. tragus ⁶
1.4.1	Salsoline A (trolline)	C ₁₂ H ₁₃ NO ₃	N	18.35	218.0816	219.0889	219.08954	-2.94	1130706.422		<i>S. collina, S. vermiculata,</i> and <i>S. tetrandra</i> ⁷⁻¹⁰
1.4.2	Salsoline B	C ₁₂ H ₁₃ NO ₃	N	18.35	218.0816	219.0889	219.08954	-2.94	1130706.422		S. collina ¹¹
1.5	Terrestric acid	C ₄ H ₆ N ₄ O ₃	Р	1.71	159.0515	158.0442	158.04399	1.56	1751550.556		S. collina ⁹
1.6	4-(2-Aminoethyl)phenol (tyramine)	C ₈ H ₁₁ NO	Р	120.63	138.094	137.0867	137.08406	19.61	6256575.185	103.0539, 121.0642	<i>Spinacia</i> <i>oleracea</i> (family, Amaranthaceae)
1.7	<i>N</i> -Methyltyramine	C ₉ H ₁₃ NO	Р	3.70	152.1048	151.098	151.09971	-14.39	1.46E+09	103.0539, 121.0642	Citrus plants ¹³
1.8	<i>N</i> , <i>N</i> -Dimethyltyramine (hordenine)	C ₁₀ H ₁₅ NO	Р	4.64	166.1236	165.1163	165.11536	5.90	4.47E+08	103.0538, 121.0642	Citrus plants ¹⁴
1.9	Dopamine / octopamine (nor- synephrine)	C ₈ H ₁₁ NO ₂	Р	65.98	154.086	153.0787	153.07898	-1.59	4414643.181		<i>Spinacia</i> <i>oleracea</i> , family Amaranthaceae
1.10	N-Methyloctopamine (synephrine)	C ₉ H ₁₃ NO ₂	N	2.28	166.0861	167.0934	167.09463	-7.65	95751.99		Citrus fruits ¹³
		C ₉ H ₁₃ NO ₂	Р	17.54	168.1042	167.0969	167.09463	13.65	8201435.68	107.0486, 135.0669, 150.0901	

1.11	Tyramine- <i>O-β</i> -D-glucoside	C ₁₄ H ₂₁ NO ₆	Р	3.47	300.1376	299.1303	299.13689	-21.94	1.92E+07	103.0527, 121.0639, 282.1324	Citrus plants ¹⁶
1.12	<i>N</i> -Methyltyramine- <i>O</i> -β-D-glucoside	C ₁₅ H ₂₃ NO ₆	Р	1.59	314.1577	313.1504	313.15254	-6.71	9487291.502	121.0640, 176.0916, 296.1496	Citrus plants ¹⁶
1.13	Hordenine <i>O</i> -β-D-glucoside	C ₁₆ H ₂₅ NO ₆	Р	2.88	328.1743	327.167	327.16819	-3.61	4059027.188		Stapelia hirsuta
1.14	Dopamine; $3-O-\beta$ -D-glucopyranoside / octopamine- $O-\beta$ -D-glucoside	C ₁₄ H ₂₁ NO ₇	N	53.07	314.1239	315.1311	315.1318	-2.07	4811491.371		Entada pursaetha (family Leguminosae)
1.15	Norepinephrine	C ₈ H ₁₁ NO ₃	Р	2.649	170.0815	169.0742	169.07389	1.77	8080052.314		Spinacia oleracea (family Amaranthaceae)
1.16	Norepinephrine- <i>O</i> -β-D-glucoside	C ₁₄ H ₂₁ NO ₈	Ν	38.05	330.119	331.1263	331.12672	-1.19	6851915.489		
1.17	Epinephrine- O - β -D-glucoside	C ₁₅ H ₂₃ NO ₈	Ν	3.69	344.1362	345.1434	345.14237	3.12	7332731.648		
1.18	Methylepinephrine- O - β -D-glucoside	C ₁₆ H ₂₅ NO ₈	Ν	40.52	358.1505	359.1577	359.15802	-0.81	8728172.29		
1.19	<i>N</i> -(4-Hydroxyphenethyl)cinnamamide (<i>N</i> -cinnamoyltyramine)	C ₁₇ H ₁₇ NO ₂	Р	122.86	268.1307	267.1235	267.12593	-9.24	6273338.075		Phellodendron japonicum (family Rutaceae) ¹⁸
1.20	<i>N</i> -(4-Hydroxyphenethyl)-3-(4- methoxyphenyl)acrylamide	C ₁₈ H ₁₉ NO ₃	Р	63.52	298.1452	297.138	297.13649	4.94	2783225.96		Chemically synthesized ¹⁹
1.21	2-Amino-2-phenylpropanoic acid; (S)- form, N-benzyloxycarbonyl (N-caffeoyltyramine)	C ₁₇ H ₁₇ NO ₄	N	42.16	298.1082	299.1155	299.11576	-0.79	6751001.093		<i>S. vermiculata,</i> and <i>S. tetrandra</i>
1.22	<i>N-trans</i> -Feruloyltyramine (moupinamide)	C ₁₈ H ₁₉ NO ₄	Р	52.96	314.1373	313.13	313.13141	-4.43	3.33E+07		S. collina, S. tetrandra, S. vermiculata, S. Tetrandra Forssk, S. baryosoma, and S. komarovii ^{9-11,} 20-23
1.23	(<i>E</i>)-3-(4-Hydroxy-3-methoxyphenyl)- <i>N</i> -(4-methoxyphenethyl)acrylamide	C ₁₉ H ₂₁ NO ₄	Р	57.54	328.1534	327.1461	327.14706	-2.83	2.27E+07	121.0619, 145.0269, 177.0540, 285.0762	Sinomenium acutum ²⁴ Zanthoxylum piperitum ²⁵
1.24.1	2`-Hydroxy- 3``-	C ₁₉ H ₂₁ NO ₆	Ν	40.52	358.1287	359.1359	359.13689	-2.65	5698740.994		S. collina ²⁶

	methyoxymoupinamide										
1.24.2	<i>N</i> -[2'-(3'',4''-Dihydroxyphenyl)-2'- hydroxyethyl]-3-(3''',4'''- dimethoxyphenyl)prop-2-enamide (<i>N</i> -(3',4'-dimethoxy-cinnamoyl)- norepinephrine)	C ₁₉ H ₂₁ NO ₆	N	40.52	358.1287	359.1359	359.13689	-2.65	5698740.994		S. foetida, S. vermiculata, and S. tetrandra ^{10, 27}
1.25	<i>N-trans</i> -Feruloyl 3- <i>O</i> - methyldopamine	C ₁₉ H ₂₁ NO ₅	Р	55.07	344.1509	343.1437	343.14197	4.93	1.39E+07	145.0272, 177.0538	<i>S. collina</i> , and <i>S. komarovi</i> ^{9, 11, 23}
1.26	Aristomanoside (4``,4```- diglucopyranoside of <i>N</i> -feruloyl-3``- methoxytyramine)	C ₃₁ H ₄₁ NO ₁₅	Р	60.23	668.2544	667.2471179	667.24762	-0.75	19587.545		Aristolochia manshuriensis ²⁸
1.27	4 ^{···} - <i>O-β</i> -D-Glucopyranosyl caffeoyltyramine	C ₂₃ H ₂₇ NO ₉	р	36.66	462.1758	461.1686	461.16858	-0.03	15889.28	121.0634, 177.0562, 325.1070, 342.1158, 356.1308	New compound
1.28	Rubemamine (<i>E</i>)- <i>N</i> -(3,4- dimethoxyphenethyl)-3-(3,4- dimethoxyphenyl)acrylamide	C ₂₁ H ₂₅ NO ₅	Р	62.23	372.1816	371.1743	371.17327	2.78	113439.74		<i>Chenopodium</i> <i>album</i> (family Amaranthaceae) ²⁹
1.29	Ethyl 2,2-diureidoacetate (allantoic	$C_6H_{12}N_4O_4$	Ν	12.016	203.0782623	204.0855389	204.08585	-1.52	1.45E+07		
	acid ethyl ester)		Р	12.03	205.0927277	204.0854511	204.08585	-1.955	5.23E+07	118.0644, 132.0798, 146.0590, 188.068	-
1.30	Vulgaxanthin I	C ₁₄ H ₁₇ N ₃ O ₇	Р	114.30	340.1131897	339.105913	339.10665	-2.17	1.25E+07		Beta vulgaris (family Amaranthaceae) 30
2	Phenolic acids and simple phenols										
2.1	Cinnamic acid	C ₉ H ₈ O ₂	N	3.22	147.0467	148.054	148.05243	10.60	3015615.677		Salsola imbricata and S. cyclophylla 31, 32
2.2	Ferulic acid	C ₁₀ H ₁₀ O ₄	N	13.54	193.0476	194.0549	194.05791	-15.59	1.18E+07		S. collina, S. kali,
		C ₁₀ H ₁₀ O ₄	Р	29.74	195.0644	194.0571	194.05791	-4.02	6695901.622		<i>S. imbricata, S. vermiculata, S. Tetrandra, and S. cyclophylla</i> ^{10, 21, 31-34}

2.3	Rosmarinic acid	$C_{18}H_{16}O_8$	Ν	11.89	359.07724	360.08452	360.08452	-0.009	6926962.023		S. imbricata ³¹
2.4	3-(4-Hydroxyphenyl)-2 (sulfooxy)propanoic acid (tichocarpol A)	$C_9H_{10}O_7S$	N	8.38	261.00812	262.01539	262.01472	2.56	6.46E+07	107.0498, 119.0488, 135.0435, 163.0384, 181.0489	<i>Tichocarpus</i> <i>crinitus</i> ³⁵
2.5	Vanillic acid glucoside (4-(β -D-glucopyranosyloxy)-3- methoxybenzoic acid)	C ₁₄ H ₁₈ O ₉	Р	19.068	331.1023254	330.0950488	330.09508	-0.09	4620696		<i>Chenopodium</i> <i>quinoa</i> (family Amaranthaceae) ³⁶
2.6	Resorcinol	C ₆ H ₆ O ₂	Р	10.15	111.0443802	110.0371036	110.03678	2.941	4556750.3		S. kali ⁵
2.7	Ethyl- <i>p</i> -digallate	C ₁₆ H ₁₄ O ₉	Ν	19.75	349.0561523	350.0634289	350.06378	-1.00	2.36E+07	101.0235, 150.9693, 180.9799, 241.0003	Mangifera indica ³⁷
3	Triterpenoids and their derivatives										
3.1	$2\alpha, 3\beta, 23, 24$ -Tetrahydroxyurs-12-en- 28-oic acid	$C_{30}H_{48}O_6$	Р	108.55	505.3514	504.3441	504.34509	-1.96	3845504.09		S. baryosma ³⁸
3.2	Oleanolic acid	$C_{30}H_{48}O_3$	Ν	95.76	455.354	456.3613	456.36035	1.97	1233503.345		<i>S. inermis</i> and <i>S. soda</i> ^{39,40}
3.3	Oleanolic acid-3- <i>O</i> -β-D- glucopyranosyl	$C_{36}H_{58}O_8$	Ν	118.98	617.4084	618.4157	618.41317	4.13	1411137.56		S. inermis ³⁹
3.4	Salsoloside C (oleanolic acid 28- O - β - D-glucopyranoside 3- O - $[O$ - β -D- xylopyranosyl- $(1 \rightarrow 4)$ - β -D- glucuropyranoside])	C ₄₇ H ₇₄ O ₁₈	Ν	66.67	925.476	926.4833	926.48752	-4.57	4.78E+07		<i>S. baryosma, S. micranthera, S. grandis,</i> and <i>S. soda</i> ⁴⁰⁻⁴³
3.5	Salsoloside E (oleanolic acid 28- <i>O</i> - β - D-glucopyranoside 3- <i>O</i> -[<i>O</i> - β -D- glucopyranosyl-(1 \rightarrow 2)-[<i>O</i> - β -D- xylopyranosyl-(1 \rightarrow 4)- β -D- glucuropyranoside])	C ₅₃ H ₈₄ O ₂₃	N	64.32	1087.53	1088.538	1088.54034	-2.45	2.32E+07		S. micranthera 44
3.6	β-D-Glucopyranosiduronic acid, (3 $β$,4 $α$)-28-($β$ -D-glucopyranosyloxy)- 23-hydroxy-28-oxoolean-12-en-3-yl	C ₄₂ H ₆₆ O ₁₅	N	57.16	809.432251	810.43952	810.44017	-0.802	1.05E+07		C. quinoa ⁴⁵
3.7.1	β-D-Glucopyranosiduronic acid, (3 $β$)- 28-($β$ -D-glucopyranosyloxy)-28- oxoolean-12-en-3-yl 3- <i>O</i> - $β$ -D- galactopyranosyl	C ₄₈ H ₇₆ O ₁₉	N	66.2	955.4920044	956.499281	956.49808	1.255	1.31E+07		Achyranthes aspera (family Amaranthaceae) 46
3.7.2	β-D-Glucopyranosiduronic acid, (2β,3β)-28-(β-D-glucopyranosyloxy)- 2-hydroxy-28-oxoolean-12-en-3-yl 3-	C ₄₈ H ₇₆ O ₁₉	N	66.2	955.4920044	956.499281	956.49808	1.255	1.31E+07		<i>Amaranthus</i> spp. 47, 48

	O-(6-deoxy-α-L-mannopyranosyl), Amaranthus sanonin Ι									
3.8	Olean-12-en-28-oic acid, $3-[(3-O-\beta-D-glucopyranosyl-\beta-D-galactopyranosyl)oxy]-23-hydroxy-, \beta-D-glucopyranosyl ester quinoasaponin 2$	$C_{48}H_{78}O_{19}$	N	66.2	957.5041504	958.511427	958.51373	-2.4	1147204.2	C. quinoa ⁴⁵
3.9	28- β -D-Glucopyranosyl 29-methyl (3 β ,4 α ,20 β)-3-[(3- O - α -L- arabinopyranosyl- β -D- glucopyranosyl)oxy]-23- hydroxyolean-12-ene-28,29-dioate (quinoasaponin 4)	C ₄₈ H ₇₆ O ₂₀	N	68.19	971.4869995	972.4942761	972.49299	1.322	6575001.7	C. quinoa ⁴⁵
3.10	β-D-Glucopyranosiduronic acid, (3 $β$)- 28-($β$ -D-glucopyranosyloxy)-28-oxo- 30-noroleana-12,20(29)-dien-3-yl 2- <i>O</i> - $β$ -D-xylopyranosyl	$C_{46}H_{70}O_{18}$	N	63.15	909.4492	910.4565	910.45622	0.30	1451371.545	S. imbricata 49
4	Flavonoids									
4.1	Isorhamnetin	$C_{16}H_{12}O_7$	Ν	61.86	315.0532	316.0605	316.0583	6.86	1.72E+07	<i>S. collina, S. imbricata, and S. komarovii</i> ^{9,21,23}
4.2	Isorhamnetin-3- <i>O-β</i> -D- glucopyranoside	C ₂₂ H ₂₂ O ₁₂	Р	42.88	479.1189	478.1117	478.1111262	1.10	5706083.02	S. collina, S. inermis, S. kali, S. vermiculata, S. tetrandra, S. grandis, S. imbricata, S. oppositifolia, and S. komarovii ^{10, 21,} 23, 34, 39, 42, 43, 50, 51
4.3	Isorhamnetin-3- <i>O</i> -rutinoside (narcissin), narcissoside	C ₂₈ H ₃₂ O ₁₆	N	42.98	623.1586	624.1659	624.16903	-5.00	4.71E+07	S. kali, S. vermiculata S. tetrandra, S. grandis, S. soda, S. oppositifolia, and S. komarovii 10, 23, 40, 42, 43, 50, 51
4.4	Isorhamnetin 3- O - β -D- apiofuranosyl(1 \rightarrow 2)- O -[α -L- rhamnopyranosyl(1 \rightarrow 6)]- β -D- glucopyranoside	$C_{33}H_{40}O_{20}$	N	38.87	755.2022095	756.2094861	756.2112937	-2.39	1.13E+07	C. pallidicaule ⁵²
4.5	Chrysoeriol-7- O - β -D-glucopyranoside	C ₂₂ H ₂₂ O ₁₁	N	54.12	461.1097	462.117	462.11621	1.62	1666971.44	S. baryosma

4.6.1	5,3'-Dihydroxy-2'-methoxy-6,7- methylenedioxyisoflavone	C ₁₇ H ₁₂ O ₇	N	22.57	327.0507	328.0579	328.0583	-1.11	9998276.45		S. somalensis 53
4.6.2	5,2'-Dihydroxy-5'-methoxy-6,7- methylenedioxyisoflavone (tetranin B)	C ₁₇ H ₁₂ O ₇	N	22.57	327.0507	328.0579	328.0583	-1.11	9998276.45		S. tetrandra ⁵⁴
4.7.1	5,8,3`-Trihydroxy-7,2`- dimethoxyisoflavone	$C_{17}H_{14}O_7$	Р	70.67	331.0814	330.0741	330.07395	0.40	9986.24		S. somalensis 55
4.7.2	5,6,3`-Trihydroxy-7,2`- dimethoxyisoflavone	C ₁₇ H ₁₄ O ₇	Р	70.67	331.0814	330.0741	330.07395	0.40	9986.24		S. somalensis 55
4.7.3	6,7,3`-Trihydroxy5,2`- dimethoxyisoflavone	C ₁₇ H ₁₄ O ₇	Р	70.67	331.0814	330.0741	330.07395	0.40	9986.24		S. somalensis 55
4.8.1	5,3`-Dihydroxy-7,8,2`- trimethoxyisoflavone	C ₁₈ H ₁₆ O ₇	N	11.43	343.0796	344.0869	344.0896029	-7.95	7262065.283		S. somalensis 53
4.8.2	5,3'-Dihydroxy-6,7,2'- trimethoxyisoflavone	C ₁₈ H ₁₆ O ₇	N	11.43	343.0796	344.0869	344.0896029	-7.95	7262065.283		S. somalensis 55
4.8.3	8,3'-Dihydroxy-5,7,2'- trimethoxyisoflavone	C ₁₈ H ₁₆ O ₇	N	11.43	343.0796	344.0869	344.0896029	-7.95	7262065.283		S. somalensis ⁵⁵
4.9	Catechin	C ₁₅ H ₁₄ O ₆	Ν	2.98	289.0718	290.0791	290.07904	0.26	2676342.356		S. imbricata ⁵⁶
4.10	Salisoflavan	C ₁₇ H ₁₈ O ₆	Р	33.49	319.1182	318.1109	318.11034	1.91	1783091.45		S. imbricata 57
5	Steroids										
5.1	Campesterol	C ₂₈ H ₄₈ O	Р	80.87	401.3787231	400.3714465	400.37052	2.314	29645.44		S. collina 58
5.2	Amasterol	$C_{28}H_{44}O_2$	Р	111.4	413.3404846	412.33321	412.33413	-2.23	404285.4		A. viridis ⁵⁹
6	Miscellaneous compounds										
6.1	9,12,13-Trihydroxyoctadeca- 10(<i>E</i>),15(<i>Z</i>)-dienoic acid	C ₁₈ H ₃₂ O ₅	N	61.98	327.2173	328.2246	328.22497	-1.24	1.38E+07		S. tetrandra ²⁰
6.2	Plastoquinone 3	C ₂₃ H ₃₂ O ₂	N	98.81	339.2299	340.2372	340.24023	-9.01	2.19E+08		<i>Spinacia</i> <i>oleracea</i> (family, Amaranthaceae)
6.3	<i>N</i> -Cyclohexanecarbonylpentadecylamine	C ₂₂ H ₄₃ NO	Р	113.83	338.3416	337.3343	337.33447	-0.39	1.17E+09	256.26349	Senna siamea Pods ⁶¹ , Polyporus umbellatus ⁶²
6.4	Amarantholidoside IV	C ₂₁ H ₃₈ O ₈	Р	77.83	419.2633972	418.2561206	418.25667	-1.314	357744.79		<i>Amaranthus</i> <i>retroflexus</i> ⁶³
6.5	Carvone	$C_{10}H_{14}O$	Р	85.91	151.1119385	150.1046619	150.10447	1.278	32232.64		S. vermiculata ⁶⁴
6.6	Chenopanone	$C_{10}H_{14}O_3$	N	11.78	181.087265	182.0945416	182.09429	1.382	962460.38		Chenopodium ambrosioides ⁶⁵
6.7	Chenopodiol	C ₁₅ H ₂₆ O ₂	Р	99.99	239.2001801	238.1929035	238.19328	-1.58	2116257.9		Chenopodium

										botrys ⁶⁶
6.8	6,11-Dihydroxy-3-eudesmen-2-one	$C_{15}H_{24}O_3$	Р	62.70	253.1794739	252.1721973	252.17254	-1.359	5767135.8	Chenopodium botrys ⁶⁷

Figure S1. Total ion chromatogram (TIC) from LC/MS-Q-TOF analysis of the crude methanol extract of *Caroxylon volkensii* presenting the labels of the identified compounds in positive ESI ion mode.

Figure S2. Total ion chromatogram (TIC) from LC/MS-Q-TOF analysis of the crude methanol extract of *Caroxylon volkensii* presenting the labels of the identified compounds in negative ESI ion mode.

Figure S3. Total ion chromatogram (TIC) from LC/MS-Q-TOF analysis of the crude methanol extract of *Caroxylon volkensii* presenting the labels of the identified compounds in expanded view (R_t 61.0-72.5 min) in the negative ESI ion mode.

[sv(+).09.mzXML] scan #669586 MS2 (180.1016 precursor m/z), RT 11.2, base peak: 105.0693 m/z (5.6E4)

Figure S4. ESI-MS/MS spectrum of salsolinol (1.1).

m/z Figure S5. ESI-MS/MS spectrum of tyramine (1.6).

[sv positive mode 09.mzXML] scan #2886237

MS2 (152.1061 precursor m/z), RT 48.10, base peak: 121.0636 m/z (3.4E3)

m/z Figure S6. ESI-MS/MS spectrum of *N*-methyltyramine (1.7).

MS2 (166.1219 precursor m/z), RT 4.7, base peak: 121.0642 m/z (8.8E5)

m/z

Figure S7. ESI-MS/MS spectrum of *N*,*N*-dimethyltyramine (hordenine) (1.8).

MS2 (168.1014 precursor m/z), RT 2.4, base peak: 135.0669 m/z (1.8E5)

Figure S8. ESI-MS/MS spectrum of *N*-methyloctopamine (synephrine) (1.10).

m/z Figure S9. ESI-MS/MS spectrum of tyramine-*O*-β-D-glucoside (1.11).

MS2 (314.1589 precursor m/z), RT 5.0, base peak: 121.0640 m/z (1.1E4)

m/z

Figure S10. ESI-MS/MS spectrum of *N*-methyltyramine-*O*-β-D-glucoside (1.12).

Figure S11. ESI-MS/MS spectrum of (*E*)-3-(4-hydroxy-3-methoxyphenyl)-*N*-(4-methoxyphenethyl)acrylamide (1.23).

MS2 (344.1480 precursor m/z), RT 54.8, base peak: 177.0538 m/z (1.9E4)

m/z Figure S12. ESI-MS/MS spectrum of *N-trans*-feruloyl 3-*O*-methyldopamine (1.25).

MS2 (462.1914 precursor m/z), RT 61.2, base peak: 121.0634 m/z (4.5E2)

Figure S13. ESI-MS/MS spectrum of 4⁽⁻⁾-*O*- β -D-glucopyranosyl caffeoyltyramine (1.27).

Figure S14. Expansion of ESI-MS/MS spectrum of $4^{\circ\circ}-O-\beta$ -D-glucopyranosyl caffeoyltyramine (1.27).

MS2 (205.0964 precursor m/z), RT 11.8, base peak: 146.0590 m/z (9.1E4)

MS2 (261.0060 precursor m/z), RT 8.5, base peak: 181.0489 m/z (9.6E4)

Figure S16. ESI-MS/MS spectrum of 3-(4-hydroxyphenyl)-2 (sulfooxy)propanoic acid (tichocarpol A) (2.4).

[sv(.).10.mzXML] scan #1184372

MS2 (349.0584 precursor m/z), RT 19.7, base peak: 349.0582 m/z (7.9E4)

m/z

Figure S17. ESI-MS/MS spectrum of ethyl-*p*-digallate (2.7).

Docking study

Docking was done using AutoDock Vina 1.2.3 $^{68, 69}$. The crystal structure for the transcriptional activator receptor (*Las*R, PDB code: 2UV0) was downloaded from the RCSB protein data bank in PDB format. The protein and the structures of the ligands were prepared for the docking study with the help of AutoDock Tools. *Las*R binding site coordinates were determined using a grid box around the co-crystallized autoinducer, 3-oxoC12-acylhomoserine lactone⁷⁰. A grid box with the dimensions of $30 \times 30 \times 30$ and spacing of 0.375 Å with X, Y, and Z coordinates of 23.997, 16.050, and 80.315, respectively, was used. The docking process was validated by removing the co-crystallized ligand and redocking it into the active site using AutoDock Vina. Subsequently, the root mean square deviation (RMSD) value of the re-docked ligand superimposition to the co-crystallized ligand was determined using PyMOL to be of 0.576 Å (Figure S16). Docking poses with the least RMSD values were visualized in both 3D style using PyMOL software ⁷¹ and 2D style using PoseView ⁷².

Figure S19. Docking validation of the co-crystallized ligand, 3-oxo-C12 acylhomoserine lactone (AHL, cyan), and the redocked ligand (pink) showing an RMSD value of 0.576 Å.

C.

B.

D.

Figure S20. Molecular binding to the transcriptional activator receptor (*Las*R, PDB code: 2UV0) visualized in both 3D and 2D forms for compounds: (*E*)-3-(4-hydroxy-3-methoxyphenyl)-*N*-(4-methoxyphenethyl)acrylamide (1.23) (A and B); *N-trans*-feruloyl 3-*O*-methyldopamine (1.25 (C and D); ethyl-*p*-digallate (2.7) (E and F); isorhamnetin (4.1) (G and H) demonstrating *Las*R amino acid residues involved in the interaction.

References:

- 1. R. M. Riggin and P. T. Kissinger, J. Agric. Food Chem., 1976, **24**, 900-900.
- H. L. Ammon, S. M. Prasad, D. M. Barnhart, V. K. Syal, K. El-Sayed and G. M. Wassel, Acta Crystallogr. C, 1987, 43, 567-570.
- 3. N. Proskurnina and A. Orekhov, *Bull. Soc. Chim. Fr., Mem.*, 1937, **4**, 1265-1271.
- 4. A. P. Orekhov and N. Proskurnina, *Khim.-Farm. Prom-st.*, 1934, 8-10.
- 5. M. Boulaaba, F. Medini, H. Hajlaoui, K. Mkadmini, H. Falleh, R. Ksouri, H. Isoda, A. Smaoui and C. Abdelly, *South African Journal of Botany*, 2019, **123**, 193-199.
- 6. R. Tundis, F. Menichini, F. Conforti, M. R. Loizzo, M. Bonesi, G. Statti and F. Menichini, *Journal of enzyme inhibition and medicinal chemistry*, 2009, **24**, 818-824.
- 7. Y. Zhao and X. Ding, *Yaoxue Xuebao*, 2004, **39**, 598-600.
- 8. U. Pässler and H.-J. Knölker, *The alkaloids: chemistry and biology*, 2011, **70**, 79-151.
- 9. Y.-S. Jin, J.-L. Du, Y. Yang, L. Jin, Y. Song, W. Zhang and H.-S. Chen, *Chem. Nat. Compd.*, 2011, **47**, 257-260.
- 10. D. M. Rasheed, S. M. El Zalabani, M. A. Koheil, H. M. El-Hefnawy and M. A. Farag, *Natural product research*, 2013, **27**, 2320-2327.
- 11. Y. Xiang, Y.-B. Li, J. Zhang, P. Li and Y.-Z. Yao, *Yao xue xue bao= Acta pharmaceutica Sinica*, 2007, **42**, 618-620.
- 12. D. Ly, K. Kang, J.-Y. Choi, A. Ishihara, K. Back and S.-G. Lee, *Journal of medicinal food*, 2008, **11**, 385-389.
- 13. F. KUSU, X.-D. LI and K. TAKAMURA, *Chemical and pharmaceutical bulletin*, 1992, **40**, 3284-3286.
- 14. B. C. Nelson, K. Putzbach, K. E. Sharpless and L. C. Sander, J. Agric. Food Chem., 2007, 55, 9769-9775.
- 15. A. Kulma and J. Szopa, *Plant Science*, 2007, **172**, 433-440.
- 16. L. Servillo, D. Castaldo, A. Giovane, R. Casale, N. D'Onofrio, D. Cautela and M. L. Balestrieri, *J. Agric. Food Chem.*, 2017, **65**, 892-899.
- 17. M. Shabana, M. Gonaid, M. M. Salama and E. Abdel-Sattar, *Natural Product Research*, 2006, **20**, 710-714.
- 18. C.-Y. Chiu, C.-Y. Li, C.-C. Chiu, M. Niwa, S. Kitanaka, A. G. Damu, E.-J. Lee and T.-S. Wu, *Chemical and pharmaceutical bulletin*, 2005, **53**, 1118-1121.
- 19. T. Nishioka, J. Watanabe, J. Kawabata and R. Niki, *Bioscience, biotechnology, and biochemistry*, 1997, **61**, 1138-1141.
- 20. M. H. Oueslati, H. Ben Jannet, Z. Mighri, J. Chriaa and P. M. Abreu, *Journal of natural products*, 2006, **69**, 1366-1369.
- 21. S. M. Osman, K. W. A. El, M. Wink and R. M. A. El, *Pharmacogn Mag*, 2016, **12**, S47-51.
- 22. N. S. Hussein and A. A. El-Bassuony, *Rev. Latinoam. Quim.*, 2004, **32**, 15-20.
- 23. H. J. Lee, C.-H. Pan, E.-S. Kim and C. Y. Kim, J. Korean Soc. Appl. Biol. Chem., 2012, 55, 317-321.
- 24. J.-J. Cheng, T.-H. Tsai and L.-C. Lin, *Planta medica*, 2012, 1873-1877.
- 25. E. Frerot, N. Neirynck, I. Cayeux, Y. H.-J. Yuan and Y.-M. Yuan, J. Agric. Food Chem., 2015, 63, 7161-7168.
- 26. Y.-S. Jin, J.-L. Du, Y. Yang, L. Jin, Y. Song, W. Zhang and H.-S. Chen, *Chemistry of natural compounds*, 2011, **47**, 257-260.
- 27. K. M. Khan, G. M. Maharvi, A. Abbaskhan, S. Hayat, M. T. H. Khan, T. Makhmoor, M. I. Choudhary, F. Shaheen and Atta-ur-rahman, *Helv. Chim. Acta*, 2003, **86**, 457-464.
- 28. P.-L. Wu, G.-C. Su and T.-S. Wu, *Journal of natural products*, 2003, **66**, 996-998.
- 29. F. Cutillo, B. D'Abrosca, M. DellaGreca, C. Di Marino, A. Golino, L. Previtera and A. Zarrelli, *Phytochemistry*, 2003, **64**, 1381-1387.
- 30. I. Sadowska-Bartosz and G. Bartosz, *Molecules*, 2021, **26**, 2520.
- 31. N. G. Shehab, E. Abu-Gharbieh and F. A. Bayoumi, *BMC complementary and alternative medicine*, 2015, **15**, 1-12.
- 32. H. A. Mohammed, M. S. Al-Omar, S. A. Mohammed, A. H. Alhowail, H. M. Eldeeb, M. S. Sajid, E. M. Abd-Elmoniem, O. A. Alghulayqeh, Y. I. Kandil and R. A. Khan, *Molecules*, 2021, **26**, 2384.
- 33. A. Sokolowska-Krzaczek, K. Skalicka-Wozniak and K. Czubkowska, *Acta Societatis Botanicorum Poloniae*, 2009, **78**, 197-201.
- 34. Y. Xiang, Y. Li, J. Zhang, P. Li and Y. Yao, *Zhongguo Zhongyao Zazhi*, 2007, **32**, 409-413.
- 35. T. Ishii, T. Okino, M. Suzuki and Y. Machiguchi, *Journal of natural products*, 2004, **67**, 1764-1766.
- 36. A. M. Gómez-Caravaca, A. Segura-Carretero, A. Fernandez-Gutierrez and M. F. Caboni, *J. Agric. Food Chem.*, 2011, **59**, 10815-10825.
- 37. N. Shaheen, Y. Lu, P. Geng, Q. Shao and Y. Wei, *Journal of Chromatography B*, 2017, **1046**, 211-217.

- 38. Z. Ahmad, S. Mehmood, I. Fatima, A. Malik, R. Ifzal, N. Afza, L. Iqbal, M. Latif and T. A. Nizami, *Magnetic Resonance in Chemistry*, 2008, **46**, 94-98.
- 39. F. S. Elsharabasy and A. M. Hosney, *Egyptian Pharmaceutical Journal*, 2013, **12**, 90.
- 40. A. M. Iannuzzi, R. Moschini, M. De Leo, C. Pineschi, F. Balestri, M. Cappiello, A. Braca and A. Del-Corso, *Food Biosci.*, 2020, **37**, 100713.
- 41. C. Annaev, M. Isamukhamedova and N. Abubakirov, *Chemistry of Natural Compounds*, 1983, **19**, 691-695.
- 42. I. E. Orhan, N. Kucukboyaci, I. Calis, J. P. Ceron-Carrasco, H. den-Haan, J. Pena-Garcia and H. Perez-Sanchez, *Phytochem. Lett.*, 2017, **20**, 373-378.
- 43. N. Kucukboyaci, I. Süntar and I. Calis, *Rec. Nat. Prod.*, 2016, **10**, 369-379.
- 44. C. Annaev, M. Isamukhamedova and N. Abubakirov, *Khimiya Prirodnykh Soedinenii*, 1984, **1**, 65-69.
- 45. T. Kuljanabhagavad, P. Thongphasuk, W. Chamulitrat and M. Wink, *Phytochemistry*, 2008, **69**, 1919-1926.
- 46. O. Kunert, E. Haslinger, M. G. Schmid, J. Reiner, F. Bucar, E. Mulatu, D. Abebe and A. Debella, *Monatshefte für Chemic/Chemical Monthly*, 2000, **131**, 195-204.
- 47. N. Nkobole and G. Prinsloo, *Molecules*, 2021, **26**, 795.
- 48. M. Junkuszew, W. Oleszek, M. Jurzysta, S. Piancente and C. Pizza, *Phytochemistry*, 1998, **49**, 195-198.
- 49. A. I. Hamed, M. Masullo, M. G. Sheded, U. A. Mahalel, M. M. Tawfik, A. Perrone and S. Piacente, *Phytochemistry Letters*, 2011, **4**, 353-356.
- 50. F. Tomas, A. Morenilla and F. Barberan, *Fitoterapia*, 1985.
- 51. R. Tundis, M. R. Loizzo, M. Bonesi, F. Menichini, G. A. Statti and F. Menichini, *Zeitschrift für Naturforschung C*, 2008, **63**, 347-354.
- 52. L. Rastrelli, P. Saturnino, O. Schettino and A. Dini, J. Agric. Food Chem., 1995, 43, 2020-2024.
- 53. Y. Woldu and B. Abegaz, *Phytochemistry*, 1990, **29**, 2013-2015.
- 54. A. Beyaoui, A. Chaari, H. Ghouila, M. h. Ali Hamza and H. Ben Jannet, *Natural product research*, 2012, **26**, 235-242.
- 55. B. M. Abegaz and Y. Woldu, *Phytochemistry*, 1991, **30**, 1281-1284.
- 56. N. G. Shehab and E. Abu-Gharbieh, *Evidence-Based Complementary and Alternative Medicine*, 2014, 2014.
- 57. M. Saleem, N. Akhter, M. Shaiq Ali, M. Nazir, N. Riaz, M. Moazzam, M. Arshad and A. Jabbar, *Magnetic resonance in chemistry*, 2009, **47**, 263-265.
- 58. T. I. Mayakova, V. G. Leont'eva, T. I. Zharkaya, A. A. Semenov, E. E. Kuznetsova and S. P. Chupin, *Khim. Prir. Soedin.*, 1984, **4**, 531-532.
- 59. S. Roy, A. Dutta and D. Chakraborty, *Phytochemistry*, 1982, **21**, 2417-2420.
- 60. D. Misiti, H. W. Moore and K. Folkers, *Journal of the American Chemical Society*, 1965, **87**, 1402-1403.
- 61. S. H. Patil, D. D. Kurlapkar and D. K. Gaikwad, *Open Access Library Journal*, 2020, **7**, 1-11.
- 62. G.-k. Liu, N. Li, Y.-j. Zhang and J.-r. Wang, *Microchemical Journal*, 2019, **144**, 351-360.
- 63. A. Fiorentino, M. DellaGreca, B. D'Abrosca, A. Golino, S. Pacifico, A. Izzo and P. Monaco, *Tetrahedron*, 2006, **62**, 8952-8958.
- 64. S. Gannoun, A. Mahfoudhi, G. Flamini, A. Helal and Z. Mighri, *Journal of Chemical and Pharmaceutical Research*, 2016, **8**, 1087-1092.
- 65. Ahmed, Journal of natural products, 2000, 63, 989-991.
- 66. T. J. De Pascual, B. Sanchez and G. Sanchez, *An Quim*, 1978, **74**, 91-96.
- 67. J. S. B. De Pascual Teresa, I.; Sanchez Gonzalez, M., An. Quim., 1978, **74**, 1575-1577.
- 68. O. Trott and A. J. Olson, J. Comput. Chem., 2010, **31**, 455-461.
- 69. J. Eberhardt, D. Santos-Martins, A. F. Tillack and S. Forli, J. Chem. Inf. Model., 2021, **61**, 3891-3898.
- 70. M. J. Bottomley, E. Muraglia, R. Bazzo and A. Carfi, *Journal of Biological Chemistry*, 2007, **282**, 13592-13600.
- 71. W. L. DeLano, *CCP4 Newsl. Protein Crystallogr*, 2002, **40**, 82-92.
- 72. K. Stierand and M. Rarey, ACS medicinal chemistry letters, 2010, 1, 540-545.