Supporting Information

$Ni\text{-}CoSe_2$ heterojunction coated by N-doped carbon for

modified separators of high-performance Li-sulfur

batteries

Kai Wang,^a Haiqin Yang,^a Ruiqiang Yan,^{*a} Cairong Chen,^b Chenglin Wu,^{ac} Wei Chen,^a Zhicai He,^a Guobo Huang,^{*a} and Ling Chang ^{*acd}

- ^a School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- ^b Taizhou Prefectural Center for Disease Control and Prevention, Taizhou 318000, China
- ^c Biomedical Industry Research Institute of Taizhou, Taizhou University, Taizhou 318000, China
- ^d Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- * Correspondence: yanrq@tzc.edu.cn (R.Q.Y.); 513493405@qq.com (G.B.H.); changling@zju.edu.cn (L.C.).

Fig. S1 BET and pore-size distribution of the Ni-CoSe₂@NC composite.

Fig. S2 EDS mapping of Ni-CoSe2@NC composite.

Fig. S3 XRD pattern of the $NiCo_2O_4@NC$ intermediate.

Fig. S4 XPS survey spectra of (a) Ni-CoSe₂@NC and (b) C 1s.

Fig. S5 Tafel plots fitted from CV curves. (a) The transition reactions from S_8 to Li_2S_n , (b) from Li_2S_n to Li_2S and (c) from Li_2S to Li_2S_n .

Fig. S6 (a) CV curves of symmetrical batteries assembled with a Li_2S_6 electrolyte and (b) potentiostatic discharge profiles for Li_2S nucleation tests.

Fig. S7 Post-cycling XPS spectra of Ni-CoSe₂@NC composite.

Fig. S8 The cycling performance when Ni-CoSe2@NC modified side facing the lithium anode.