Lewis Acid-Mediated Transformations of 5-Acyl-*N*-Fluoroalkyl-1,2,3-Triazoles to Cyclopentenones, Indenones, or Oxazoles

Lukáš Janecký^{a,b}, Petr Beier^{a,*}

^a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czechia

^b Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czechia

*Corresponding author: beier@uochb.cas.cz

Supporting information

Contents

General information	2
Synthesis of triazoles 3	3
General procedure:	3
Preparation and characterization of starting triazoles 3	3
Synthesis of cyclopentenones 41	2
General procedure A:1	2
General procedure B:1	2
Preparation and characterization of cyclopentenone derivatives 4	2
Mechanistic evidence of the vinyl cation intermediate1	5
Synthesis of indenones imidoyl halides 51	5
General procedure:1	5

Preparation and characterization of indenones imidoyl halides 5	16
Synthesis of oxazoles 6	17
General procedure:	17
Preparation and characterization of oxazoles 6	17
Synthesis of <i>N</i> -alkenyl compounds 7	20
Copies of NMR spectra	22

General information

All commercially available chemicals were used as received unless stated otherwise. Flash column chromatography was performed using silica gel 60 (0.040–0.063 mm). Automated flash column chromatography was performed on Teledyne ISCO CombiFlash Rf⁺ Lumen Automated Flash Chromatography System with UV/Vis detection. ¹H, ¹³C, and ¹⁹F NMR spectra were measured at ambient temperature using 5 mm diameter NMR tubes. ¹³C NMR spectra were proton decoupled. The chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H and ¹³C NMR) or residual solvents and internal CFCl₃ (0 ppm for ¹⁹F NMR). Coupling constants (*J*) are reported in Hertz. Structural elucidation was aided by additional acquisition of various 2D spectra (¹H-1H COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC). High resolution mass spectra (HRMS) were recorded on a Waters Micromass AutoSpec Ultima or Agilent 7890A GC coupled with Waters GCT Premier orthogonal acceleration time-of-flight detector using electron impact (EI) or chemical ionization (CI), on an LTQ Orbitrap XL using electrospray ionization (ESI), Q-Tof micro (Waters) is a quadrupole orthogonal acceleration time-of-flight tandem mass spectrometer using atmospheric-pressure chemical ionization (APCI), and on a Bruker solariX 94 ESI/MALDI-FT-ICR using dual ESI/MALDI ionization.

Synthesis of triazoles 3

General procedure:

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with the corresponding copper(I) acetylide (1.0 mmol, 1.0 equiv.), 3Å molecular sieves (240 mg) and a stirring bar. Then it was cooled to 0 °C, followed by the addition of a solution of azide in THF (~1.5 mmol, 4 mL), EDIPA (523 μ I, 3.0 mmol, 3.0 equiv.) and the corresponding acyl chloride (2.0 mmol, 2.0 equiv.). The reaction mixture was left to warm to room temperature and stirred for 16-20 h. The crude suspension was filtered via a short plug of silica gel and washed with THF (3 x 10 mL). The filtrate was evaporated with Celite (water bath 40 °C) and purified by column chromatography (silica gel, cyclohexane/EtOAc or pentane/toluene) to obtain pure triazole **3**.

Preparation and characterization of starting triazoles 3

2-methyl-1-(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)prop-2-en-1-one (3a):

Prepared according to the general procedure. Yield: 266.0 mg, 80%. <u>Scale up</u> reaction: Under air atmosphere, 250 mL round bottom flask was charged with the corresponding copper(I) acetylide (10.67 mmol, 1.756 g, 1.0 equiv.), 3Å molecular sieves (2.56 g) and a stirring bar. Then it was cooled to 0 °C, followed by the addition of a solution of $CF_3CF_2N_3$ in THF (~16 mmol, 45 mL), EDIPA

(5.6 ml, 32.0 mmol, 3.0 equiv.) and methacryloyl chloride (2.1 ml, 21.33 mmol, 2.0 equiv.). The reaction mixture was left to warm to room temperature and stirred for 18 h. The crude suspension was filtered via a short plug of silica gel and washed with THF (3 x 50 mL). The filtrate was evaporated with Celite (water bath 40 °C) and purified by flash column chromatography (Eluent: 10:1 cyclohexane/EtOAc) to obtain pure **3a**. Yield: 79%, 2.796 g, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.44 – 7.40 (m, 3H), 6.06 (q, *J* = 1.5 Hz, 1H), 5.60 (q, *J* = 0.9 Hz, 1H), 2.05 (dd, *J* = 1.5, 0.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.7, 146.5, 144.5, 133.0, 130.4 (t, *J* = 1.8 Hz), 129.8, 129.2, 128.0, 127.6, 117.0 (qt, *J* = 287.9, 40.0 Hz), 110.9 (tq, *J* = 272.0, 43.7 Hz), 16.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.7 (s, 3F), –94.9 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₁F₅N₃O [M+H]⁺: 332.08168, found 332.08156.

1-(4-(4-methoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)-2-methylprop-2-en-1-one (3b):

Prepared according to the general procedure. Yield: 187.0 mg, 47%, pale yellow oil; Eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 6.96 – 6.92 (m, 2H), 6.06 (q, *J* = 1.5 Hz, 1H), 5.60 (q, *J* = 0.9 Hz, 1H), 3.83 (s, 3H), 2.04 (dd, *J* = 1.5, 0.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.0, 160.8, 146.5, 144.5, 132.8, 129.4 (t, *J* = 1.8)

Hz), 129.0, 120.4, 117.1 (qt, J = 288.3, 40.2 Hz), 114.6, 110.9 (tq, J = 272.0, 43.6 Hz), 55.5, 16.6; ¹⁹F NMR

(377 MHz, CDCl₃) δ –82.7 (s, 3F), –94.9 s (2F); HRMS (ESI⁺) *m*/*z* calcd for C₁₅H₁₃F₅N₃O₂ [M+H]⁺: 362.09224, found 362.09200.

2-methyl-1-(4-(4-nitrophenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)prop-2-en-1-one (3c):

Prepared according to the general procedure. Yield: 161.0 mg, 43%, pale yellow oil; Eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.25 (m, 2H), 7.83 – 7.79 (m, 2H), 6.16 (q, *J* = 1.5 Hz, 1H), 5.62 (q, *J* = 1.0 Hz, 1H), 2.08 (dd, *J* = 1.6, 0.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.1, 148.4, 144.7, 144.1, 134.0, 133.7, 131.9 (t, *J* = 1.7 Hz),

128.2, 124.4, 116.9 (qt, J = 287.9, 39.8 Hz), 110.9 (tq, J = 273.1, 43.8 Hz), 16.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -82.7 (s, 3F), -95.0 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₄H₉F₅N₄O₃ [M+Na]⁺: 399.04870, found 399.04898.

1-(4-(3,5-dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)-2-methylprop-2-en-1-one (3d):

Prepared according to the general procedure. Yield: 188.0 mg, 48%, pale yellow oil; Eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 6.77 (d, *J* = 2.3 Hz, 2H), 6.51 (t, *J* = 2.3 Hz, 1H), 6.11 (q, *J* = 1.5 Hz, 1H), 5.63 (q, *J* = 1.0 Hz, 1H), 3.80 (s, 6H), 2.07 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.7, 161.3, 146.4, 144.5, 133.0, 130.5 (t, *J* = 1.8 Hz),

129.6, 117.0 (qt, J = 287.9, 40.0 Hz), 110.9 (tq, J = 272.0, 43.6 Hz), 105.5, 102.0, 55.5, 16.5; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.7 (s, 3F), –95.0 (s, 2F); HRMS (ESI⁺) *m*/*z* calcd for C₁₆H₁₅F₅N₃O₃ [M+H]⁺: 392.10281, found 392.10311.

1-(4-butyl-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)-2-methylprop-2-en-1-one (3e):

Prepared according to the general procedure. Yield: 176.5 mg, 57%, pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 6.20 (q, *J* = 1.6 Hz, 1H), 5.65 – 5.64 (m, 1H), 2.67 – 2.62 (m, 2H), 2.06 – 2.04 (m, 3H), 1.68 – 1.60 (m, 2H), 1.37 – 1.27 (m, 2H), 0.92 – 0.87 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.1, 148.2, 145.2, 132.3, 131.4 (t, *J* = 1.8 Hz), 117.1 (qt, *J* = 287.9, 40.0 Hz), 110.8

(tq, J = 271.3, 43.3 Hz), 31.0, 24.8, 22.4, 16.6, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.7 (s, 3F), –94.9 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₂H₁₅F₅N₃O [M+H]⁺: 312.11298, found 312.11277.

(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)(phenyl)methanone (3f):

Prepared according to the general procedure. Yield: 183.0 mg, 50%. <u>Scale up</u> reaction: Under air atmosphere, a 100 mL screw-cap glass reaction tube was charged with the corresponding copper(I) acetylide (0.685 g, 4.16 mmol, 1.0 equiv.), 3Å molecular sieves (1.0 g) and a stirring bar. Then it was cooled to 0 °C, followed by the addition of a solution of $CF_3CF_2N_3$ in THF (~6.24 mmol, 18 mL), EDIPA (523 µl, 3.0 mmol, 3.0 equiv.) and benzoyl chloride (967 µl, 8.32

mmol, 2.0 equiv.). The reaction mixture was left to warm to room temperature and stirred for 18 h. The crude suspension was filtered via short plug of silica gel and washed with THF (3 x 20 mL). The filtrate was evaporated with Celite and purified by flash column chromatography (silica gel, eluent: 96:4 cyclohexane/EtOAc) to obtain pure **3f**. Yield: 54%, 831 mg, pale yellow oil; ¹H NMR (401 MHz, CDCl₃) δ 7.78 – 7.74 (m, 2H), 7.65 – 7.60 (m, 3H), 7.47 – 7.42 (m, 2H), 7.34 – 7.29 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.8, 146.9, 135.6, 135.2, 130.6 (t, *J* = 2.0 Hz), 129.9, 129.7, 129.4, 129.1, 127.8, 127.7, 117.3 (qt, *J* = 288.3, 39.8 Hz), 111.0 (tq, *J* = 271.7, 43.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₁F₅N₃O [M+H]⁺: 368.08168, found 368.08163.

(4-(2-methoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)(phenyl)methanone (3g):

Prepared according to the general procedure. Yield: 160.0 mg, 46%, colorless oil; eluent: 95:5 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.01 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.74 – 7.70 (m, 2H), 7.56 – 7.51 (m, 1H), 7.40 – 7.35 (m, 2H), 7.29 (ddd, *J* = 8.2, 7.4, 1.8 Hz, 1H), 7.06 (td, *J* = 7.6, 1.1 Hz, 1H), 6.64 (dd, *J* = 8.3, 1.1 Hz, 1H), 3.27 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 155.3, 143.8, 135.7, 134.4, 131.7 (t, *J* = 2.2 Hz), 131.3, 130.2, 129.2, 128.8, 121.3, 117.4,

117.2 (qt, J = 287.9, 39.4 Hz), 111.1 (tq, J = 271.9, 43.0 Hz), 110.6, 53.5; ¹⁹F NMR (377 MHz, CDCl₃) $\delta - 82.0$ (s, 3F), -93.4 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₈H₁₃F₅N₃O₂ [M+H]⁺: 398.09224, found 398.09217.

(4-(cyclohex-1-en-1-yl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)(phenyl)methanone (3h):

Prepared according to the general procedure. Yield: 234.9 mg, 63%, pale yellow oil; eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.73 (m, 2H), 7.70 – 7.65 (m, 1H), 7.53 – 7.48 (m, 2H), 6.20 (td, *J* = 4.0, 2.1 Hz, 1H), 2.26 (ttd, *J* = 6.6, 2.7, 1.8 Hz, 2H), 1.99 (tdt, *J* = 6.6, 4.0, 2.7 Hz, 2H), 1.63 – 1.57 (m, 2H), 1.51 – 1.45 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 186.0, 149.1, 135.8, 135.3, 132.4, 129.6, 129.4 (t, *J* = 2.0 Hz), 129.3, 126.0, 117.1 (qt, *J* = 287.9,

40.0 Hz), 110.9 (tq, *J* = 271.3, 43.3 Hz), 27.0, 25.6, 22.3, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s, 3F), –94.4 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₅F₅N₃O [M+H]⁺: 372.11298, found 372.11319.

(4-butyl-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)(phenyl)methanone (3i):

Prepared according to the general procedure. Yield: 215.0 mg, 62%, pale yellow oil; eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.75 (m, 2H), 7.73 – 7.68 (m, 1H), 7.56 – 7.51 (m, 2H), 2.58 – 2.53 (m, 2H), 1.64 – 1.56 (m, 2H), 1.23 (dq, *J* = 14.5, 7.3 Hz, 2H), 0.82 – 0.77 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.2, 148.9, 135.9, 135.4, 131.8 (d, *J* = 2.2 Hz), 129.7, 129.4, 117.1 (qt, *J* = 287.9, 40.0 Hz), 110.9 (tq, *J* = 271.8, 43.1 Hz),

31.0, 24.9, 22.2, 13.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) *m*/z calcd for C₁₅H₁₅F₅N₃O [M+H]⁺: 348.11298, found 348.11273.

2-methyl-1-(4-phenyl-1-(trifluoromethyl)-1H-1,2,3-triazol-5-yl)prop-2-en-1-one (3j):

Prepared according to the general procedure. Yield: 182.0 mg, 65%, yellow oil; eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.45 – 7.39 (m, 3H), 6.06 (q, *J* = 1.5 Hz, 1H), 5.62 (q, *J* = 1.0 Hz, 1H), 2.05 (t, *J* = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.7, 146.9, 144.5, 133.0, 129.8, 129.3,

129.1, 128.1, 127.7, 117.7 (q, J = 270.3 Hz), 16.6; ¹⁹F NMR (377 MHz, CDCl₃) δ –56.8 (s, 3F); HRMS (ESI⁺) m/z calcd for C₁₃H₁₁F₃N₃O [M+H]⁺: 282.08487, found 282.08483.

ethyl 2,2-difluoro-2-(5-methacryloyl-4-phenyl-1H-1,2,3-triazol-1-yl)acetate (3k):

F CO₂Et Prepared according to the general procedure. Yield: 132.0 mg, 39%, pale yellow oil; eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 7.64 - 7.58 (m, 2H), 7.44 - 7.39 (m, 3H), 6.03 (q, *J* = 1.5 Hz, 1H), 5.67 (q, *J* = 1.1 Hz, 1H), 4.53 (q, *J* = 7.2 Hz, 2H), 2.06 - 2.05 (m, 3H), 1.43 (td, *J* = 7.2, 0.9 Hz,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.0, 158.2 (t, *J* = 33.9 Hz), 147.1, 144.1, 132.8, 129.6, 129.0, 128.5, 127.8, 126.2, 110.2 (t, *J* = 269.0 Hz), 65.2, 16.7, 13.9; ¹⁹F NMR (377 MHz, CDCl₃) δ –85.7 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₆H₁₆F₂N₃O₃ [M+H]⁺: 336.11542, found 336.11563.

phenyl(4-phenyl-1-(1,1,2,2-tetrafluoroethyl)-1H-1,2,3-triazol-5-yl)methanone (3I):

Prepared according to the general procedure. Yield: 202.9 mg, 58%, pale yellow oil; eluent: 97:3 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 7.78 (dd, *J* = 8.2, 1.8 Hz, 2H), 7.65 – 7.58 (m, 3H), 7.47 – 7.41 (m, 2H), 7.32 (td, *J* = 4.3, 1.8 Hz, 3H), 6.81 (tt, *J* = 52.3, 5.0, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.1, 147.2, 135.6, 135.2, 130.3 (d, *J* = 1.8 Hz), 130.0, 129.7,

129.3, 129.0, 128.0, 127.8, 113.0 (tt, J = 269.2, 29.3 Hz), 107.8 (tt, J = 254.6, 33.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –97.0 (td, J = 8.3, 4.8 Hz, 2F), –137.6 (dt, J = 52.2, 8.3 Hz, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₂F₄N₃O [M+H]⁺: 350.09110, found 350.09140.

(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)(phenyl)methanone (3m):

Prepared according to the general procedure. Yield: 191.5 mg, 60%, yellow oil; eluent: 2:1 pentane/toluene. ¹H NMR (401 MHz, CDCl₃) δ 7.78 – 7.74 (m, 2H), 7.64 – 7.57 (m, 3H), 7.45 – 7.40 (m, 2H), 7.33 – 7.28 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.7, 147.3, 135.6, 135.1, 129.9, 129.7, 129.5, 129.4, 129.0, 127.9 (2C), 117.8 (q, *J* = 270.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –56.6 (s, 3F); HRMS (ESI⁺)

m/z calcd for C₁₆H₁₁F₃N₃O [M+H]⁺: 318.08487, found 318.08484.

phenyl(4-phenyl-1-tosyl-1H-1,2,3-triazol-5-yl)methanone (**3n**):

Prepared according to the general procedure. Yield: 41.7 mg, 21%, white solid; eluent: 12:88 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.97 (m, 2H), 7.82 – 7.78 (dq, *J* = 8.1, 1.5 Hz, 2H), 7.65 – 7.57 (m, 3H), 7.48 – 7.42 (m, 2H), 7.41 – 7.37 (m, 2H), 7.29 – 7.25 (m, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 147.7, 145.2, 136.0, 135.2,

133.0, 130.7, 130.5, 129.9, 129.4, 129.3, 129.3, 129.0, 128.2, 127.4, 22.0; HRMS (ESI⁺) m/z calcd for $C_{22}H_{18}N_3O_3S$ [M+H]⁺: 404.10634, found 404.10638.

cyclopropyl(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)methanone (**3o**):

Prepared according to the general procedure. Yield: 170.0 mg, 51%, pale yellow oil; eluent: 1:2 toluene/pentane. ¹H NMR (401 MHz, CDCl₃) δ 7.75 – 7.70 (m, 2H), 7.51 – 7.46 (m, 3H), 2.09 (tt, *J* = 7.7, 4.5 Hz, 1H), 1.42 – 1.37 (m, 2H), 1.12 – 1.07 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 147.8, 132.6 (t, *J* = 2.0 Hz), 130.1, 129.1, 128.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 271.7, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 287.9, 39.2 Hz), 111.0 (tg, *J* = 287.9, 39.2 Hz), 110.1 (tg

42.9 Hz), 23.7, 15.2; ¹⁹F NMR (377 MHz, CDCl₃) δ –81.9 (d, *J* = 1.8 Hz, 3F), –94.0 (d, *J* = 1.1 Hz, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₁F₅N₃O [M+H]⁺: 332.08168, found 332.08189.

1-(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)butan-1-one (3p):

Prepared according to the general procedure. Yield: 143.0 mg, 43%, pale pink oil; eluent: 1:2 toluene/pentane. ¹H NMR (401 MHz, CDCl₃) δ 7.63 – 7.56 (m, 2H), 7.52 – 7.46 (m, 3H), 2.61 (t, *J* = 7.3 Hz, 2H), 1.70 – 1.61 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 147.1, 132.6, 130.2, 129.3, 128.4, 128.1, 117.1 (qt, *J* = 287.9, 39.4 Hz), 111.0 (tq, *J* = 271.6, 43.3 Hz), 45.8, 17.0, 13.3; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.1 (s, 3F), –94.1 (s, 2F); HRMS

(ESI⁺) *m/z* calcd for C₁₄H₁₃F₅N₃O [M+H]⁺: 334.09733, found 334.09751.

1-(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)-3-phenylpropan-1-one (3q):

Prepared according to the general procedure. Yield: 208.0 mg, 53%, yellow oil; eluent: 1:2 toluene/pentane. ¹H NMR (401 MHz, CDCl₃) δ 7.51 – 7.46 (m, 3H), 7.45 – 7.40 (m, 2H), 7.28 – 7.21 (m, 3H), 7.08 – 7.05 (m, 2H), 2.99 – 2.97 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 192.9, 147.5, 139.4, 132.2 (t, *J* = 2.2 Hz), 130.2, 129.3, 128.7, 128.6, 128.4, 127.9, 126.7, 117.1 (qt, *J* = 287.9, 39.4 Hz), 110.9 (tq, *J* = 272.0, 43.3 Hz), 45.4, 29.4; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.1 (s, 3F), –94.1 (s, 2F); HRMS (ESI⁺) *m*/z calcd for C₁₉H₁₅F₅N₃O [M+H]⁺:

396.11298, found 396.11275.

3-methyl-1-(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)butan-1-one (3r):

Prepared according to the general procedure. Yield: 288.0 mg, 83%, yellow oil; eluent: 1:2 toluene/pentane. ¹H NMR (401 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.51 – 7.48 (m, 3H), 2.51 (d, *J* = 6.6 Hz, 2H), 2.17 (dh, *J* = 13.3, 6.7 Hz, 1H), 0.87 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 147.2, 132.7 (t, *J* = 2.0 Hz), 130.2, 129.2, 128.6, 128.1, 117.2 (qt, *J* = 287.9, 39.2 Hz), 111.0 (tq, *J* = 272.3, 42.9 Hz), 52.6, 24.2, 22.2; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.0 (s, 3F),

-94.0 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₅H₁₅F₅N₃O [M+H]⁺: 348.11298, found 348.11272.

(E)-1-(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)-3-phenylprop-2-en-1-one (3s):

Prepared according to the general procedure. Yield: 139.0 mg, 35%, pale yellow oil; eluent: 94:6 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.46 – 7.35 (m, 9H), 6.92 (d, *J* = 16.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 183.8, 149.4, 147.2, 133.3, 132.1, 131.4 (t, *J* = 1.8 Hz), 130.0, 129.3, 129.2, 129.1, 128.2, 128.0, 125.4, 117.2 (qt, *J* = 288.3, 39.4 Hz), 109.7 (tq, *J* = 272.2, 43.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –82.2 (s, 3F), –94.3 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₉H₁₃F₅N₃O [M+H]⁺: 394.09733, found 394.09718.

1-(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)prop-2-en-1-one (3t):

Prepared according to the general procedure. Yield: 137.0 mg, 43%, pale yellow oil; eluent: 1:2 toluene/pentane. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.62 (m, 2H), 7.47 – 7.43 (m, 3H), 6.57 (dd, *J* = 17.5, 10.6 Hz, 1H), 6.13 (d, *J* = 1.6 Hz, 1H), 6.10 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 184.8, 147.5, 135.7,

135.2, 130.4 (t, J = 1.8 Hz), 130.1, 129.2, 128.2, 127.8, 117.1 (qt, J = 287.9, 39.6 Hz), 110.96 (tq, J = 272.5, 43.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –82.4 (s, 3F), –94.4 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₃H₉F₅N₃O [M+H]⁺: 318.06603, found 318.06577.

(2-(methylthio)pyridin-3-yl)(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)methanone (3u):

Prepared according to the general procedure. Yield: 194.0 mg, 45%, yellow oil; eluent: 95:5 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.60 (m, 2H), 7.36 – 7.32 (m, 3H), 6.87 (d, *J* = 2.3 Hz, 2H), 6.68 (t, *J* = 2.3 Hz, 1H), 3.74 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 185.5, 161.4, 146.8, 136.9, 130.5 (t, *J* = 1.8 Hz), 129.8, 129.1, 127.9, 127.7, 117.1 (qt, *J* = 288.1, 40.0 Hz), 111.0 (tq, *J* = 272.8, 43.3 Hz), 108.2, 107.5, 55.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) *m*/z calcd for C₁₉H₁₅F₅N₃O₃

[M+H]⁺: 428.10281, found 428.10242.

(3,5-dimethoxyphenyl)(4-(3,5-dimethoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)methanone (**3v**):

Prepared according to the general procedure. Yield: 217.0 mg, 45%, pale yellow oil; eluent: 8:2 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 6.87 (d, *J* = 2.3 Hz, 2H), 6.76 (d, *J* = 2.3 Hz, 2H), 6.68 (t, *J* = 2.3 Hz, 1H), 6.41 (t, *J* = 2.3 Hz, 1H), 3.74 (s, 6H), 3.67 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 185.5, 161.4, 161.2, 146.6, 137.0, 130.7, 129.4, 117.0 (qt, *J* = 287.9, 40.0 Hz), 110.9 (tq, *J* = 272.4, 43.5 Hz), 108.0, 107.4, 105.6, 102.3, 55.7, 55.4; ¹⁹F NMR (377 MHz, CDCl₃)

 δ -82.6 (s, 3F), -94.5 (s, 2F); HRMS (ESI⁺) *m*/*z* calcd for C₂₁H₁₉F₅N₃O₅ [M+H]⁺: 488.12394, found 488.12404.

(3,5-dimethoxyphenyl)(4-(4-nitrophenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)methanone (3w):

Prepared according to the general procedure. Yield: 269.5 mg, 57%, yellow oil; eluent: 92:8 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.20 (m, 2H), 7.86 – 7.83 (m, 2H), 6.87 (d, *J* = 2.3 Hz, 2H), 6.74 (t, *J* = 2.3 Hz, 1H), 3.79 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 161.6, 148.3, 144.3, 136.6, 133.9, 132.1 (t, *J* = 1.8 Hz), 128.3, 124.4, 116.9 (qt, *J* = 288.3, 39.6 Hz), 110.9 (tq, *J* = 273.4, 43.8 Hz), 108.2, 107.5, 55.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s,

3F), -94.6 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₉H₁₄F₅N₄O₅ [M+H]⁺: 473.08789, found 473.08777.

(3,5-dimethoxyphenyl)(4-(4-methoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazol-5-yl)methanone (3x):

Prepared according to the general procedure. Yield: 128.0 mg, 28%, colorless oil; eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.53 (m, 2H), 6.88 – 6.85 (m, 3H), 6.84 (d, J = 2.2 Hz, 1H), 6.68 (t, J = 2.3 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 185.7, 161.4, 160.7, 146.7, 137.0, 129.6 (t, J = 1.8 Hz), 129.2, 120.3, 176.3 (qt, J = 287.9, 40.0 Hz), 114.6, 111.0 (tq, J = 272.1, 43.5 Hz), 108.1, 107.5, 55.8, 55.4; ¹⁹F NMR (376 MHz,

CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) m/z calcd for C₂₀H₁₇F₅N₃O₄ [M+H]⁺: 458.11337, found 458.11320.

(4-methoxyphenyl)(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)methanone (3y):

Prepared according to the general procedure. Yield: 206.0 mg, 52%. Scale up reaction: Under air atmosphere, a 100 mL round bottom flask was charged with the corresponding copper(I) acetylide (5.0 mmol, 0.823 g, 1.0 equiv.), 3Å molecular sieves (1.2 g) and a stirring bar. Then it was cooled to 0 °C, followed by the addition of a solution of CF₃CF₂N₃ in THF (~7.5 mmol, 20 mL), EDIPA (2.6 ml, 15.0 mmol, 3.0 equiv.) and 4-methoxybenzoyl chloride (1.36 ml, 10.00

MeO

mmol, 2.0 equiv.). The reaction mixture was left to warm to room temperature and stirred for 17 h. The crude suspension was filtered via a short plug of silica gel and washed with THF (3 x 20 mL). The filtrate was evaporated with Celite (water bath 40 °C) and purified by flash column chromatography (silica gel, eluent: 92:8 cyclohexane/EtOAc) to obtain triazole. Yield: 70%, 1.388 g, pale yellow oil; ¹H NMR (401 MHz, CDCl₃) δ 7.76 – 7.70 (m, 2H), 7.67 – 7.62 (m, 2H), 7.34 – 7.30 (m, 3H), 6.98 – 6.83 (m, 2H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.0, 165.6, 146.4, 132.5, 130.8, 129.6, 129.1, 128.3, 128.0, 127.6, 117.1 (qt, J = 288.3, 40.0 Hz), 114.7, 111.0 (tq, J = 272.7, 43.3 Hz), 55.8; ¹⁹F NMR (377 MHz, CDCl₃) δ –82.6 (s, 3F), -94.7 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₈H₁₃F₅N₃O₂ [M+H]⁺: 398.09224, found 398.09231.

(4-chlorophenyl)(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)methanone (3z):

Prepared according to the general procedure. Yield: 185.0 mg, 46%, pale yellow oil; eluent: 96:4 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 7.71 - 7.67 (m, 2H), 7.61 – 7.58 (m, 2H), 7.42 – 7.39 (m, 2H), 7.35 – 7.31 (m, 3H); ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta 184.6, 147.0, 142.5, 133.5, 131.1, 130.0 \text{ (t, } J = 1.8 \text{ Hz}\text{)},$ 129.9, 129.9, 129.2, 127.8, 127.6, 117.0 (qt, J = 288.3, 40.0 Hz), 111.0 (tq, J = 272.7, 43.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS

(ESI⁺) *m*/z calcd for C₁₇H₁₀F₅CIN₃O [M+H]⁺: 402.04271, found 402.04263.

naphthalen-2-yl(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)methanone (3aa):

Prepared according to the general procedure. Yield: 199.0 mg, 48%, white solid; eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.12 (m, 1H), 7.98 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.94 – 7.91 (m, 1H), 7.89 – 7.81 (m, 2H), 7.71 – 7.67 (m, 2H), 7.64 (ddd, *J* = 8.3, 7.0, 1.3 Hz, 1H), 7.54 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.32 – 7.26 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.7, 146.9, 136.7, 133.4, 132.7, 132.4, 130.7, 130.1, 130.1, 129.7, 129.6, 129.1, 128.1, 127.9, 127.6, 127.6, 123.7, 117.1 (qt, *J* = 287.9, 40.0 Hz), 111.0 (tq, *J* = 272.3,

43.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –82.6 (s, 3F), –94.5 (s, 2F); HRMS (ESI⁺) *m*/z calcd for C₂₁H₁₃F₅N₃O [M+H]⁺: 418.09733, found 418.09748.

(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)(thiophen-2-yl)methanone (3ab):

Prepared according to the general procedure. Yield: 212.0 mg, 57%, pale yellow oil; eluent: 97:3 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 7.81 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.70 – 7.65 (m, 2H), 7.37 – 7.32 (m, 4H), 7.03 (dd, *J* = 4.9, 3.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 146.8, 142.2, 138.2, 136.7, 130.3 (t, *J* = 1.8 Hz), 129.8, 129.2, 129.1, 127.8 (2C), 117.1 (qt, *J* = 287.9, 39.6 Hz),

111.0 (tq, J = 273.2, 43.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –82.6 (s, 3F), –94.8 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₅H₉F₅N₃OS [M+H]⁺: 374.03810, found 374.03851.

furan-2-yl(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)methanone (3ac):

Prepared according to the general procedure. Yield: 129.0 mg, 36%, white solid; eluent: 96:4 to 92:8 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 7.67 – 7.63 (m, 2H), 7.62 – 7.59 (m, 1H), 7.38 – 7.35 (m, 3H), 7.12 (d, *J* = 3.8 Hz, 1H), 6.53 (dd, *J* = 3.7, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 151.3, 149.6, 147.5, 129.8 (2C), 129.1, 128.0, 127.8, 122.8, 117.1 (qt, *J* = 288.3, 40.0 Hz),

113.7, 111.0 (tq, J = 272.9, 43.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –82.6 (s, 3F), –95.0 (s, 2F); HRMS (ESI⁺) m/z calcd for C₁₅H₉F₅N₃O₂ [M+H]⁺: 358.06094, found 358.06066.

(2-(methylthio)pyridin-3-yl)(1-(perfluoroethyl)-4-phenyl-1H-1,2,3-triazol-5-yl)methanone (3ad):

Prepared according to the general procedure. Yield: 67.0 mg, 16%, yellow oil; eluent: 10:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (dd, *J* = 4.7, 1.8 Hz, 1H), 7.57 – 7.53 (m, 2H), 7.48 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.33 – 7.30 (m, 3H), 6.89 (dd, *J* = 7.9, 4.7 Hz, 1H), 2.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.0, 164.8, 153.6, 147.2, 140.2, 130.2 (t, *J* = 1.8 Hz), 129.9, 129.2, 127.7, 127.6, 127.5, 118.0, 115.6 (qt, *J* = 287.8, 39.6 Hz), 111.0 (tq, *J* = 272.7, 43.6 Hz), 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –82.5 (s, 3F), –94.6 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₂F₅N₄OS [M+H]⁺: 415.06465, found 415.06443.

Synthesis of cyclopentenones 4

General procedure A:

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with AlCl₃ (1.05 equiv.) and stirring bar, then 0.1M solution of the starting triazole **3** in DCE was added (0.068–0.204 mmol in 0.68–2.04 ml). The reaction mixture was heated to 60 °C and stirred for 1-2 h. The conversion was monitored by ¹⁹F NMR spectroscopy or TLC. The dark reaction mixture was filtered via paper, washed with Et₂O, evaporated, and purified by column chromatography (silica gel, pentane/DCM) to obtain pure product.

General procedure B:

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with 0.1M solution of the starting triazole **3** in DCE (0.068–0.204 mmol in 0.68–2.04 ml) and a stirring bar. Then, BF₃·OEt₂ (1.05 equiv.) was added. The reaction mixture was heated to 60 °C and stirred for 1-2 h. The conversion was monitored by ¹⁹F NMR spectroscopy or TLC. The dark reaction mixture was filtered via paper, washed with Et₂O, evaporated, and purified by column chromatography (silica gel, pentane/DCM) to obtain pure product.

Preparation and characterization of cyclopentenone derivatives 4

(Z)-N-(4-chloro-4-methyl-5-oxo-2-phenylcyclopent-1-en-1-yl)-2,2,2-trifluoroacetimidoyl chloride (4a):

Prepared according to the general procedure A from **3a** (43.6 mg, 0.1315 mmol). Yield: 19.0 mg, 43%. <u>Scale up reaction</u>: Under air atmosphere, a 100 mL round bottom flask was charged with AlCl₃ (308.2 mg, 2.311 mmol, 1.05 equiv.) and a stirring bar, then a solution of **3a** was added (739 mg) in DCE (22 ml). The reaction mixture was heated to 60 °C and stirred for 2 h. The conversion was monitored by

¹⁹F NMR spectroscopy. The dark reaction mixture was filtered via paper, washed with Et₂O, evaporated, and purified by column chromatography (silica gel, eluent: 4:1 to 3:1 pentane/DCM) to obtain pure product. Yield: 41%, 302.5 mg, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.61 (m, 2H), 7.54 – 7.46 (m, 3H), 3.65 (d, *J* = 18.2 Hz, 1H), 3.42 (d, *J* = 18.2 Hz, 1H), 1.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 150.5, 138.4 (q, *J* = 43.6 Hz), 135.2, 132.1, 132.1, 129.3, 128.8, 116.8 (q, *J* = 278.0 Hz), 63.1, 46.0, 27.0; ¹⁹F NMR (376 MHz, CDCl₃) δ –71.0 (s, 3F); HRMS (APCl⁺) *m/z* calcd for C₁₄H₁₁F₃Cl₂NO [M+H]⁺: 336.01643, found 336.01681.

(Z)-N-(4-chloro-2-(4-methoxyphenyl)-4-methyl-5-oxocyclopent-1-en-1-yl)-2,2,2-trifluoroacetimidoyl

chloride (**4b**):

Prepared according to the general procedure A from **3b** (56.2 mg, 0.156 mmol). Yield: 29.5 mg, 52%, yellow oil; eluent: 3:1 pentane/DCM. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 2H), 7.01 – 6.97 (m, 2H), 3.88 (s, 3H), 3.62 (d, *J* = 18.1

Hz, 1H), 3.39 (d, J = 18.1 Hz, 1H), 1.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 191.4, 162.8, 150.8, 137.8 (q, J = 43.1 Hz), 133.5, 131.0, 124.8, 116.9 (q, J = 277.5 Hz), 114.8, 63.4, 55.7, 46.0, 27.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –71.4 (s, 3F); HRMS (ESI⁺) m/z calcd for C₁₅H₁₃F₃Cl₂NO₂ [M+H]⁺: 366.02700, found 366.02672.

(Z)-N-(4-chloro-4-methyl-2-(4-nitrophenyl)-5-oxocyclopent-1-en-1-yl)-2,2,2-trifluoroacetimidoyl chloride

(**4c**):

Prepared according to the general procedure A from **3c** (48.0 mg, 0.128 mmol). Yield: 19.0 mg, 39%, colorless oil; eluent: 1:1 pentane/DCM. ¹H NMR (400 MHz, CDCl₃) δ 8.35 – 8.31 (m, 2H), 7.81 – 7.77 (m, 2H), 3.66 (d, *J* = 18.2 Hz, 1H), 3.44

(d, J = 18.2 Hz, 1H), 1.87 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 191.7, 149.1, 146.8, 139.8 (q, J = 43.7 Hz), 137.9, 137.5, 129.4, 124.3, 116.6 (q, J = 278.1 Hz), 62.7, 46.0, 26.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –71.5 (s, 3F); HRMS (APCl⁺) m/z calcd for C₁₄H₉F₃Cl₂N₂O₃ [M]⁺: 379.99368, found 379.99270.

ethyl (Z)-2-chloro-2-((4-chloro-4-methyl-5-oxo-2-phenylcyclopent-1-en-1-yl)imino)acetate (4d):

Prepared according to the general procedure A from **3k** (50.0 mg, 0.149 mmol). Yield: 10.0 mg, 20%, yellow oil; eluent: 1:1 pentane/DCM. ¹H NMR (400 MHz, CDCl₃) δ 7.70 - 7.65 (m, 2H), 7.52 - 7.47 (m, 3H), 4.50 (q, *J* = 7.1 Hz, 2H), 3.66 (d, *J* = 18.1 Hz, 1H), 3.43 (d, *J* = 18.1 Hz, 1H), 1.86 (s, 3H), 1.48 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126

MHz, CDCl₃) δ 192.3, 158.6, 149.0, 141.1, 137.0, 132.5, 131.7, 129.2, 128.8, 64.5, 63.4, 46.0, 27.2, 14.2; HRMS (ESI⁺) m/z calcd for C₁₆H₁₆Cl₂NO₃ [M+H]⁺: 340.05018, found 340.05011.

2,2,2-trifluoro-N-(4-fluoro-4-methyl-5-oxo-2-phenylcyclopent-1-en-1-yl)acetamide (4e):

Prepared according to the general procedure B from **3a** (61.3 mg, 0.185 mmol). Yield: 24.2 mg, 43%, yellow oil; eluent: 2:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.00 (bs, 1H), 7.52 – 7.45 (m, 5H), 3.43 (ddd, *J* = 21.3, 17.7, 1.0 Hz, 1H), 3.21 (ddd, *J* = 17.7, 9.8, 1.0 Hz, 1H), 1.66 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8 (d, *J* = 19.4 Hz), 157.7 (d, *J* = 2.6 Hz), 154.3 (g, *J* = 38.5 Hz), 133.5,

132.1, 129.0, 127.8, 126.5 (d, J = 2.2 Hz), 115.5 (q, J = 288.1 Hz), 91.6 (d, J = 184.1 Hz), 42.5 (d, J = 24.9 Hz), 21.7 (d, J = 26.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –76.0 (s, 3F), –151.31 to –151.57 (m, 1H); HRMS (EI) *m/z* calcd for C₁₄H₁₁F₄NO₂ [M]⁺: 301.0720, found 301.0718.

2,2,2-trifluoro-N-(4-fluoro-2-(4-methoxyphenyl)-4-methyl-5-oxocyclopent-1-en-1-yl)acetamide (4f):

Prepared according to the general procedure B from **3b** (39.4 mg, 0.109 mmol). Yield: 23.1 mg, 64%, white solid; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.02 (bs, 1H), 7.52 – 7.47 (m, 2H), 7.00 – 6.94 (m, 2H), 3.87 (s, 3H), 3.40 (ddd, *J* = 21.5, 17.6, 1.0 Hz, 1H), 3.19 (ddd, *J* = 17.5, 9.9, 0.9 Hz, 1H),

1.64 (d, J = 22.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.4 (d, J = 19.1 Hz), 162.7, 157.4, 154.3 (q, J = 38.2 Hz), 130.1, 125.5, 124.7 (d, J = 2.2 Hz), 115.4 (q, J = 288.3 Hz), 114.3, 91.4 (d, J = 183.4 Hz), 55.5, 42.2 (d, J = 24.9 Hz), 21.7 (d, J = 27.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –76.0 (s, 3F), –150.62 to –150.88 (m, 1H); HRMS (ESI⁺) *m/z* calcd for C₁₅H₁₄F₄NO₃ [M+H]⁺: 332.09043, found 332.09024.

2,2,2-trifluoro-N-(4-fluoro-4-methyl-2-(4-nitrophenyl)-5-oxocyclopent-1-en-1-yl)acetamide (4g):

Prepared according to the general procedure B from **3c** (25.5 mg, 0.068 mmol). Yield: 2.1 mg, 9%, white solid; eluent: 2:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.33 – 8.29 (m, 2H), 8.05 (bs, 1H), 7.58 – 7.55 (m, 2H), 3.44 (dd, *J* = 21.1, 17.8 Hz, 1H), 3.23 (dd, *J* = 17.7, 10.5 Hz, 1H), 1.70 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 197.2 (d, *J* = 19.3 Hz), 154.0 (q, *J* = 39.1

Hz), 152.2 (d, J = 2.2 Hz), 148.8, 140.1, 128.3, 123.8, 115.2 (q, J = 288.2 Hz), 91.1 (d, J = 184.7 Hz), 42.7 (d, J = 25.4 Hz), 29.7, 21.4 (d, J = 27.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –76.0 (s, 3F), –150.99 to –151.26 (m, 1H); HRMS (EI) *m*/z calcd for C₁₄H₁₀F₄N₂O₄ [M]⁺: 346.0571, found 346.0572.

5-fluoro-2-isocyanato-5-methyl-3-phenylcyclopent-2-en-1-one (4h):

Prepared according to the general procedure B from **3j** (25.5 mg, 0.091 mmol). Yield: 8.8 mg, 42%, yellow oil; eluent: 2:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.97 (m, 2H), 7.56 – 7.51 (m, 3H), 3.37 (dd, *J* = 21.3, 17.7 Hz, 1H), 3.18 (dd, *J* = 17.6, 9.9 Hz, 1H), 1.69 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.1

(d, J = 19.4 Hz), 149.6 (d, J = 2.2 Hz), 133.6, 132.1, 132.0, 129.1, 128.6, 126.9, 91.2 (d, J = 183.8 Hz), 40.8 (d, J = 25.3 Hz), 22.0 (d, J = 26.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –150.59 to –150.85 (m, 1H); HRMS (APCI⁺) m/z calcd for C₁₃H₁₁FNO₂ [M+H]⁺: 232.07683, found 232.07660.

Mechanistic evidence of the vinyl cation intermediate

Scheme S1 Cyclization of triazole 3r to cyclopentenone 4i.

N-(3,3-dimethyl-5-oxo-2-phenylcyclopent-1-en-1-yl)-2,2,2-trifluoroacetamide (4i):

Prepared according to the general procedure B from **3r** (30.4 mg, 0.088 mmol). Yield: 5.0 mg, 20%, colorless oil; eluent: 4:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 7.59 (bs, 1H), 7.45 – 7.38 (m, 3H), 7.24 – 7.21 (m, 2H), 2.56 (s, 2H), 1.35 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 201.2, 171.1, 154.0 (q, *J* = 38.1 Hz), 133.8, 130.0, 129.3, 128.6, 126.9, 115.5 (q, *J* = 288.3 Hz), 49.9, 41.8, 28.0; ¹⁹F

NMR (377 MHz, CDCl₃) δ –76.1 (s, 3F); HRMS (ESI⁺) *m*/*z* calcd for C₁₅H₁₅F₃NO₂ [M+H]⁺: 298.10494, found 298.10443.

Synthesis of indenones imidoyl halides 5

General procedure:

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with AlCl₃ (1.05 equiv.) and a stirring bar, then 0.1M solution of the starting triazole **3** (0.131–0.200 mmol) in DCE (1.31–2.00 ml) was added. The reaction mixture was heated to 60 °C and stirred for 1-2 h. The conversion was monitored by ¹⁹F NMR spectroscopy. The dark reaction mixture was filtered via paper, washed with Et₂O, evaporated, and purified by column chromatography (silica gel, pentane/DCM) to obtain pure product.

Preparation and characterization of indenones imidoyl halides 5

(Z)-2,2,2-trifluoro-N-(3-(2-methoxyphenyl)-1-oxo-1H-inden-2-yl)acetimidoyl chloride (5a):

Prepared according to the general procedure from **3g** (58.0 mg, 0.146 mmol). Yield: 5.5 mg, 10%, orange solid; eluent: 1:3 pentane/DCM. ¹H NMR (401 MHz, CDCl₃) δ 7.52 (ddd, *J* = 7.1, 1.3, 0.7 Hz, 1H), 7.46 (ddd, *J* = 8.3, 7.1, 1.7 Hz, 1H), 7.39 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.35 (ddd, *J* = 7.8, 7.1, 1.3 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.09 (dt, *J* = 7.3, 0.9 Hz, 1H), 7.07 (td, *J* = 7.7, 1.1 Hz, 1H), 7.01 (dd, *J* = 8.4, 1.1 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 187.8, 157.6, 144.2, 142.9, 136.3 (q, *J* =

43.1 Hz), 135.5, 134.0, 131.9, 129.6, 129.1, 129.0, 123.6, 122.1, 120.6, 119.4, 116.8 (q, J = 277.0 Hz), 111.6, 55.4; ¹⁹F NMR (377 MHz, CDCl₃) δ –71.5 (s, 3F); HRMS (ESI⁺) m/z calcd for C₁₈H₁₂F₃CINO₂ [M+H]⁺: 366.05032, found 366.05005.

(Z)-2,2,2-trifluoro-N-(1-oxo-3-phenyl-1H-inden-2-yl)acetimidoyl chloride (5b):

Prepared according to the general procedure from **3a** (53.5 mg, 0.146 mmol). Yield: 10.0 mg, 19%, orange solid; eluent: 3:1 pentane/DCM. ¹H NMR (401 MHz, CDCl₃) δ 7.58 – 7.55 (m, 1H), 7.53 – 7.48 (m, 5H), 7.41 (td, *J* = 7.5, 1.3 Hz, 1H), 7.34 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.32 – 7.28 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 145.4, 143.3, 137.2 (q, *J* = 43.3 Hz), 134.2, 134.1, 130.7, 130.6, 129.8, 129.4, 129.0, 128.4, 124.1, 122.2, 116.7 (q, *J* = 277.7 Hz); ¹⁹F NMR NMR (471 MHz, CDCl₃) δ –71.5 (s,

3F); HRMS (EI⁺) *m*/z calcd for C₁₇H₉F₃CINO [M]⁺: 335.0319, found 335.0322.

(Z)-N-(4,6-dimethoxy-3-(4-nitrophenyl)-1-oxo-1H-inden-2-yl)-2,2,2-trifluoroacetimidoyl chloride (5c):

Prepared according to the general procedure from **3w** (87.0 mg, 0.184 mmol). Yield: 24.5 mg, 30%, dark solid; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (500 MHz, CDCl₃) δ 8.26 – 8.24 (m, 2H), 7.58 – 7.55 (m, 2H), 6.87 (d, *J* = 2.1 Hz, 1H), 6.47 (d, *J* = 2.1 Hz, 1H), 3.88 (s, 3H), 3.68 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 186.8, 163.6, 155.6, 148.4, 147.4, 138.6, 136.9 (q, *J* = 43.1 Hz), 133.7, 132.6, 129.9, 122.8, 119.4, 116.7 (q, *J* = 277.5 Hz), 104.5, 104.0, 56.2, 55.7; ¹⁹F NMR (377 MHz, CDCl₃) δ –71.4 (s, 3F); HRMS (APCI⁺) *m/z* calcd

for C₁₉H₁₂F₃ClN₂O₅ [M]⁺: 440.03814, found 440.03805.

(Z)-N-(4,6-dimethoxy-1-oxo-3-phenyl-1H-inden-2-yl)-2,2,2-trifluoroacetimidoyl chloride (5d):

Prepared according to the general procedure from **3u** (85.4 mg, 0.200 mmol). Yield: 38.0 mg, 48%, dark solid; eluent: 1:1 pentane/DCM. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.38 (m, 5H), 6.85 (d, *J* = 2.2 Hz, 1H), 6.46 (d, *J* = 2.1 Hz, 1H), 3.86 (s, 3H), 3.67 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.2, 163.2, 155.7, 150.9, 135.7 (q, *J* = 42.9 Hz), 133.4, 132.8, 131.9, 130.2, 129.0, 127.5, 120.1, 116.9 (q, *J* = 277.1 Hz), 104.1, 104.0, 56.1, 55.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –71.3 (s, 3F); HRMS (ESI⁺) *m/z* calcd for C₁₉H₁₄F₃CINO₃ [M+H]⁺: 396.06088, found 396.06064.

(Z)-N-(4,6-dimethoxy-3-(4-methoxyphenyl)-1-oxo-1H-inden-2-yl)-2,2,2-trifluoroacetimidoyl chloride (5e):

Prepared according to the general procedure from **3x** (60.0 mg, 0.131 mmol). Yield: 31.5 mg, 56%, dark solid; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 6.93 – 6.90 (m, 2H), 6.84 (d, *J* = 2.1 Hz, 1H), 6.46 (d, *J* = 2.1 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.70 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 186.8, 163.3, 161.4, 155.7, 151.9, 135.2 (q, *J* = 42.7 Hz), 134.0, 131.9, 131.3, 124.2, 119.8, 117.0 (q, *J* = 277.0 Hz), 112.9, 104.0, 103.7, 56.1, 55.7, 55.5; ¹⁹F NMR (377 MHz, CDCl₃) δ –71.1 (s, 3F);

HRMS (ESI⁺) *m/z* calcd for C₂₀H₁₆F₃CINO₄ [M+H]⁺: 426.07145, found 426.07180.

Synthesis of oxazoles 6

General procedure:

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with 0.1M solution of the starting triazole **3** (0.084–0.132 mmol) in DCE (0.84–1.32 ml) and a stirring bar. Then, BF₃·OEt₂ (1.05 equiv.) was added. The reaction mixture was heated to 60 °C and stirred for 1-2 h. The conversion was monitored by ¹⁹F NMR spectroscopy. The dark reaction mixture was filtered via paper, washed with Et₂O, evaporated with Celite, and purified by flash column chromatography (silica gel, cyclohexane/EtOAc) to obtain pure product.

Preparation and characterization of oxazoles 6

phenyl(5-phenyl-2-(trifluoromethyl)oxazol-4-yl)methanone (6a):

Prepared according to the general procedure from **3a** (42.3 mg, 0.115 mmol). Yield: 39.0 mg, 76%, white solid; eluent: 4:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.07 (m, 2H), 8.05 – 8.01 (m, 2H), 7.64 – 7.59 (m, 1H), 7.53 – 7.47 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 187.5, 157.0, 147.9 (q, *J* = 44.7 Hz), 136.7, 134.0, 133.8, 131.6, 130.6, 129.0, 128.6, 128.4, 125.9, 116.5

(q, J = 271.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –66.1 (s, 3F); HRMS (EI) m/z calcd for C₁₇H₁₀F₃NO₂ [M]⁺: 316.0580, found 316.0576.

(5-(4-methoxyphenyl)-2-(trifluoromethyl)oxazol-4-yl)(phenyl)methanone (6b):

Prepared according to the general procedure from **3y** (33.5 mg, 0.084 mmol). Yield: 22.0 mg, 75%, pale orange solid; eluent: 4:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.04 (m, 4H), 7.63 – 7.58 (m, 1H), 7.52 – 7.47 (m, 2H), 7.01 – 6.97 (m, 2H), 3.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.4, 162.2, 157.4, 147.0 (q, *J* = 44.8 Hz), 136.9, 133.4, 132.6, 130.4,

130.2, 128.4, 118.2, 116.4 (q, *J* = 271.2 Hz), 114.2, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –66.1 (s, 3F); HRMS (EI) *m/z* calcd for C₁₈H₁₂F₃NO₃ [M]⁺: 347.0764, found 347.0763.

(5-(4-chlorophenyl)-2-(trifluoromethyl)oxazol-4-yl)(phenyl)methanone (mixture of izomers A/B 84:16) (6c):

Prepared according to the general procedure from **3z** (33.9 mg, 0.084 mmol). Yield: 24.5 mg, 83%, colorless oil; eluent: 4:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.11 – 8.02 (m, 4H),

7.65 – 7.60 (m, 1H), 7.53 – 7.47 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 187.3, 156.1, 148.0 (q, J = 44.7 Hz), 137.9, 136.6, 133.9, 132.0, 130.6, 129.7, 129.3, 128.6, 124.3, 116.4 (q, J = 271.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –66.0 (s, 3F); HRMS (EI) *m*/*z* calcd for C₁₇H₉F₃CINO₂ [M]⁺: 351.0268, found 351.0263.

phenyl(5-(thiophen-2-yl)-2-(trifluoromethyl)oxazol-4-yl)methanone (mixture of izomers A/B 90:10) (6d):

Prepared according to the general procedure from **3ab** (44.4 mg, 0.119 mmol). Yield: 20.2 mg, 53%, orange solid; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.24 – 8.21 (m, 2H), 8.19 (dd, *J* =

3.9, 1.3 Hz, 1H), 7.66 – 7.60 (m, 2H), 7.55 – 7.50 (m, 2H), 7.22 (dd, J = 5.0, 3.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.5, 154.0, 146.7 (q, J = 44.7 Hz), 136.8, 133.5, 132.03, 131.97, 131.9, 130.6, 128.5,

128.2, 127.4, 116.4 (q, J = 271.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –66.0 (s, 3F); HRMS (ESI⁺) m/z calcd for C₁₅H₉F₃NO₂S [M+H]⁺: 324.03006, found 324.02985.

(5-isobutyl-2-(trifluoromethyl)oxazol-4-yl)(phenyl)methanone (mixture of izomers A/B 70:30) (6e):

Prepared according to the general procedure from **3r** (30.4 mg, 0.088 mmol). Yield: 7.0 mg, 27%, colorless oil; (**6e** major A): eluent: 4:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.23 – 8.18 (m, 2H), 7.63 – 7.59 (m, 1H), 7.53 – 7.48 (m, 2H), 3.07 (d, *J* = 7.2 Hz,

2H), 2.20 (hept, J = 6.7 Hz, 1H), 1.01 (d, J = 6.7 Hz, 6H); ¹³C NMR (126 MHz, CDCI₃) δ 186.9, 162.8, 147.7 (q, J = 44.6 Hz), 136.7, 133.5, 130.4, 128.7, 128.5, 116.5 (q, J = 271.1 Hz), 35.2, 28.3, 22.5, ¹⁹F NMR (376 MHz, CDCI₃) δ –66.3 (s, 3F); (**6e** minor B): eluent: 4:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCI₃) δ 8.23 – 8.18 (m, 2H), 7.53 – 7.48 (m, 3H), 2.97 (d, J = 7.0 Hz, 2H), 2.31 (hept, J = 6.7 Hz, 1H), 1.01 (d, J = 6.7 Hz, 6H); ¹³C NMR (126 MHz, CDCI₃) δ 195.6, 155.5, 147.7 (q, J = 44.7 Hz), 135.3, 134.4, 131.8, 128.8, 125.8, 116.4 (q, J = 270.7 Hz), 49.7, 24.7, 22.8, ¹⁹F NMR (376 MHz, CDCI₃) δ –66.3 (s, 3F); HRMS (ESI+) *m*/z calcd for C₁₅H₁₅F₃NO₂ [M+H]⁺: 298.10494, found 298.10461.

(2-methoxyphenyl)(5-phenyl-2-(trifluoromethyl)oxazol-4-yl)methanone (6f):

Prepared according to the general procedure with corresponding triazole **3g** (39.0 mg, 0.098 mmol). Yield: 4.0 mg, 12%, colorless oil; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.08 – 8.05 (m, 2H), 7.58 (dd, J = 7.6, 1.6 Hz, 1H), 7.52 – 7.44 (m, 4H), 7.05 (td, J = 7.5, 0.9 Hz, 1H), 6.93 (dd, J = 8.4, 1.0 Hz, 1H), 3.71 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.7, 158.7,

155.7, 147.8 (q, J = 44.4 Hz), 135.5, 133.9, 131.5, 130.8, 128.8, 128.4, 128.2, 126.1, 120.9, 116.5 (q, J = 271.1 Hz), 111.9, 55.8; ¹⁹F NMR (377 MHz, CDCl₃) δ –66.1 (s, 3F); HRMS (EI) *m*/*z* calcd for C₁₈H₁₂F₃NO₃ [M]⁺: 347.0764, found 347.0768.

2,2,2-trifluoro-N-(3-(2-methoxyphenyl)-1-oxo-1H-inden-2-yl)acetamide (5f):

Prepared as the mixture with **6f** according to the general procedure B from **3g** (39.0 mg, 0.098 mmol). Yield: 9.1 mg, 32%, orange solid; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.15 (bs, 1H), 7.55 – 7.48 (m, 3H), 7.35 (td, *J* = 7.6, 1.3 Hz, 1H), 7.23 (ddd, *J* = 7.8, 7.0, 1.0 Hz, 1H), 7.16 – 7.11 (m, 2H), 7.03 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 190.9, 157.1, 153.6 (q, *J* = 37.7 Hz), 144.7, 141.3, 134.3, 131.9, 128.9, 128.9,

128.7, 126.5, 123.7, 122.3, 120.7, 120.6, 115.8 (q, J = 288.4 Hz), 111.3, 55.6; ¹⁹F NMR (377 MHz, CDCl₃) $\delta -75.7$ (s, 3F); HRMS (EI) *m/z* calcd for C₁₈H₁₂F₃NO₃ [M]⁺: 347.0764, found 347.0754.

4-benzoyl-5-phenyloxazol-2(3H)-one (6g):

Prepared according to the general procedure with corresponding triazole **3m** (42.0 mg, 0.132 mmol). Yield: 11.3 mg, 32%, orange oil; eluent: 4:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (bs, 1H), 7.69 – 7.60 (m, 2H), 7.51 – 7.43 (m, 1H), 7.35 – 7.23 (m, 5H), 7.23 – 7.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 185.1, 153.0, 146.6, 135.9, 133.5, 130.6, 129.4, 128.9, 128.6,

128.4, 126.4, 120.9; HRMS (ESI⁺) *m/z* calcd for C₁₆H₁₂NO₃ [M+H]⁺: 266.08117, found 266.08123.

Synthesis of *N*-alkenyl compounds 7

5-chloro-5-methyl-3-phenyl-2-(5-(trifluoromethyl)-1H-tetrazol-1-yl)cyclopent-2-en-1-one (7a):

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with cyclopentenone imidoyl halide **4a** (32.4 mg, 0.096 mmol), MeCN (1.4 mL) and sodium azide (13.8 mg, 0.212 mmol, 2.2 equiv.) was added. The reaction mixture was stirred for 1 h at 25 °C. Then the reaction suspension was filtered via paper, washed with Et₂O and extracted with Et₂O, water and brine. The organic layer

was dried over anhydrous MgSO₄, filtered via paper, evaporated with Celite and purified by flash column chromatography (silica gel, cyclohexane/EtOAc) to obtain pure product. Yield: 20.0 mg, 61%, colorless oil; eluent: 1:2 pentane/DCM. ¹H NMR (401 MHz, CDCl₃) δ 7.58 – 7.54 (m, 1H), 7.44 – 7.39 (m, 2H), 7.16 – 7.12 (m, 2H), 3.33 (d, *J* = 18.6 Hz, 1H), 3.26 (d, *J* = 18.5 Hz, 1H), 1.74 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 168.2, 147.2 (q, *J* = 42.7 Hz), 134.1, 129.9, 129.7, 128.1, 125.5, 117.6 (q, *J* = 272.7 Hz), 61.7, 43.1, 21.0; ¹⁹F NMR (377 MHz, CDCl₃) δ –62.2 (s, 3F); HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₀F₃ClN₄ONa [M+Na]⁺: 365.03874, found 365.03866.

(Z)-N'-(4-chloro-4-methyl-5-oxo-2-phenylcyclopent-1-en-1-yl)-2,2,2-trifluoroacetimidamide (7b):

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with cyclopentenone imidoyl halide **4a** (35.6 mg, 0.106 mmol), DCE (1.5 mL) and excess of NH₄OH (29% solution in water, 147 μ I) was added. The reaction mixture was stirred for 1 h at 25 °C. Then the reaction mixture was filtered via paper, washed with Et₂O and extracted with Et₂O, water and brine. The organic layer was

dried over anhydrous MgSO₄, filtered via paper, evaporated with Celite and purified by flash column chromatography (silica gel, cyclohexane/EtOAc) to obtain pure product. Yield: 23.5 mg, 70%, white solid; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (401 MHz, CDCl₃) δ 8.00 – 7.97 (m, 2H), 7.48 – 7.44 (m, 3H), 5.80 – 5.75 (bs, 2H), 3.60 (d, *J* = 18.5 Hz, 1H), 3.39 (d, *J* = 18.3 Hz, 1H), 1.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.9, 153.1, 145.1 (q, *J* = 35.8 Hz), 137.2, 133.4, 131.3, 129.0, 128.7, 118.2 (q, *J* = 278.8 Hz),

63.3, 46.0, 26.9; ¹⁹F NMR (377 MHz, CDCl₃) δ –73.2 (s, 3F); HRMS (EI) *m/z* calcd for C₁₄H₁₂F₃ClN₂O [M]⁺: 316.0585, found 316.0583.

7-methyl-5-phenyl-3-(trifluoromethyl)-6,7-dihydro-2H-cyclopenta[e][1,2,4]triazin-7-ol (7c):

Under air atmosphere, a 10 mL screw-cap glass reaction tube was charged with cyclopentenone imidoyl halide **4a** (53.0 mg, 0.158 mmol), MeCN (1.6 mL) and hydrazine hydrate (19.7 mg, 0.394 mmol, 2.5 equiv.) was added. The reaction mixture was stirred for 1 h at 25 °C. Then the reaction suspension was filtered via paper, washed with Et_2O and extracted with Et_2O , water and brine. The organic

layer was dried over anhydrous MgSO₄, filtered via paper, evaporated with Celite and purified by flash column chromatography (silica gel, cyclohexane/EtOAc) to obtain pure product. Yield: 24.0 mg, 52%, white solid; eluent: 3:1 cyclohexane/EtOAc. ¹H NMR (400 MHz, Acetone-*d*₆) δ 9.20 (bs, 1H), 8.61 (bs, 1H), 7.31 – 7.22 (m, 5H), 2.89 (dq, *J* = 16.8, 1.2 Hz, 1H), 2.76 (dq, *J* = 16.9, 2.0 Hz, 1H), 1.98 (dd, *J* = 2.0, 1.3 Hz, 3H); ¹³C NMR (101 MHz, Acetone-*d*₆) δ 162.7, 147.8, 141.1, 138.7 (q, *J* = 35.9 Hz), 133.9, 129.2, 128.7, 126.3, 121.7 (q, *J* = 270.0 Hz), 53.0, 48.3, 13.4; ¹⁹F NMR (376 MHz, Acetone-*d*₆) δ –69.4 (s, 3F); HRMS (ESI⁺) *m/z* calcd for C₁₄H₁₃F₃N₃O [M+H]⁺: 296.10052, found 296.10057.

Copies of NMR spectra

Figure S1. ¹H NMR spectrum of 3a (CDCl₃, 401 MHz)

Figure S3. ¹⁹F NMR spectrum of 3a (CDCl₃, 377 MHz)

Figure S5. ¹³C NMR spectrum of 3b (CDCl₃, 101 MHz)

Figure S6. ¹⁹F NMR spectrum of **3b** (CDCl₃, 377 MHz)

Figure S7. ¹H NMR spectrum of 3c (CDCl₃, 401 MHz)

Figure S9. ¹⁹F NMR spectrum of 3c (CDCl₃, 377 MHz)

Figure S11. ¹³C NMR spectrum of 3d (CDCl₃, 101 MHz)

Figure S12. ¹⁹F NMR spectrum of 3d (CDCl₃, 377 MHz)

Figure S13. ¹H NMR spectrum of 3e (CDCI₃, 401 MHz)

Figure S14. ¹³C NMR spectrum of 3e (CDCl₃, 101 MHz)

Figure S15. ¹⁹F NMR spectrum of 3e (CDCl₃, 377 MHz)

Figure S18. ¹⁹F NMR spectrum of 3f (CDCl₃, 471 MHz)

Figure S19. ¹H NMR spectrum of 3g (CDCl₃, 401 MHz)

Figure S20. ¹³C NMR spectrum of 3g (CDCl₃, 101 MHz)

Figure S21. ¹⁹F NMR spectrum of 3g (CDCl₃, 377 MHz)

Figure S22. ¹H NMR spectrum of 3h (CDCl₃, 401 MHz)

Figure S23. ¹³C NMR spectrum of 3h (CDCl₃, 101 MHz)

Figure S24. ¹⁹F NMR spectrum of **3h** (CDCl₃, 377 MHz)

Figure S25. ¹H NMR spectrum of 3i (CDCl₃, 401 MHz)

Figure S27. ¹⁹F NMR spectrum of **3i** (CDCI₃, 377 MHz)

Figure S30. ¹⁹F NMR spectrum of 3j (CDCl₃, 377 MHz)

Figure S32. ¹³C NMR spectrum of 3k (CDCl₃, 101 MHz)

Figure S33. ¹⁹F NMR spectrum of 3k (CDCl₃, 377 MHz)

Figure S36. ¹⁹F NMR spectrum of 3I (CDCI₃, 377 MHz)

Figure S39. ¹⁹F NMR spectrum of 3m (CDCl₃, 377 MHz)

Figure S40. ¹H NMR spectrum of 3n (CDCl₃, 401 MHz)

Figure S42. ¹H NMR spectrum of **3o** (CDCl₃, 401 MHz)

Figure S44. ¹⁹F NMR spectrum of **3o** (CDCI₃, 377 MHz)

Figure S45. ¹H NMR spectrum of **3p** (CDCl₃, 401 MHz)

Figure S46. ¹³C NMR spectrum of 3p (CDCl₃, 101 MHz)

Figure S47. ¹⁹F NMR spectrum of **3p** (CDCl₃, 377 MHz)

Figure S48. ¹H NMR spectrum of 3q (CDCl₃, 401 MHz)

Figure S49. ¹³C NMR spectrum of 3q (CDCl₃, 101 MHz)

Figure S50. ¹⁹F NMR spectrum of **3q** (CDCl₃, 377 MHz)

Figure S52. ¹³C NMR spectrum of 3r (CDCl₃, 101 MHz)

Figure S53. ¹⁹F NMR spectrum of **3r** (CDCl₃, 377 MHz)

Figure S54. ¹H NMR spectrum of 3s (CDCI₃, 401 MHz)

Figure S56. ¹⁹F NMR spectrum of **3s** (CDCl₃, 377 MHz)

Figure S58. ¹³C NMR spectrum of 3t (CDCl₃, 101 MHz)

Figure S59. ¹⁹F NMR spectrum of 3t (CDCl₃, 377 MHz)

Figure S60. ¹H NMR spectrum of 3u (CDCl₃, 401 MHz)

Figure S61. ¹³C NMR spectrum of **3u** (CDCl₃, 101 MHz)

Figure S62. ¹⁹F NMR spectrum of 3u (CDCl₃, 377 MHz)

Figure S64. ¹³C NMR spectrum of **3v** (CDCl₃, 101 MHz)

Figure S65. ¹⁹F NMR spectrum of 3v (CDCl₃, 377 MHz)

Figure S66. ¹H NMR spectrum of **3w** (CDCl₃, 401 MHz)

Figure S67. ¹³C NMR spectrum of **3w** (CDCl₃, 101 MHz)

Figure S70. ¹³C NMR spectrum of **3x** (CDCl₃, 101 MHz)

Figure S71. ¹⁹F NMR spectrum of 3x (CDCI₃, 377 MHz)

Figure S72. ¹H NMR spectrum of 3y (CDCI₃, 401 MHz)

Figure S73. ¹³C NMR spectrum of **3y** (CDCl₃, 101 MHz)

Figure S74. ¹⁹F NMR spectrum of 3y (CDCI₃, 377 MHz)

Figure S76. ¹³C NMR spectrum of 3z (CDCl₃, 101 MHz)

Figure S77. ¹⁹F NMR spectrum of **3z** (CDCI₃, 377 MHz)

Figure S78. ¹H NMR spectrum of **3aa** (CDCl₃, 401 MHz)

Figure S81. ¹H NMR spectrum of **3ab** (CDCl₃, 401 MHz)

Figure S82. ¹³C NMR spectrum of 3ab (CDCI₃, 101 MHz)

Figure S83. ¹⁹F NMR spectrum of **3ab** (CDCl₃, 377 MHz)

Figure S86. ¹⁹F NMR spectrum of **3ac** (CDCl₃, 377 MHz)

Figure S88. ¹³C NMR spectrum of 3ad (CDCl₃, 101 MHz)

Figure S89. ¹⁹F NMR spectrum of 3ad (CDCl₃, 377 MHz)

Figure S92. ¹⁹F NMR spectrum of 4a (CDCl₃, 377 MHz)

Figure S94. ¹³C NMR spectrum of 4b (CDCl₃, 151 MHz)

Figure S95. ¹⁹F NMR spectrum of 4b (CDCl₃, 377 MHz)

Figure S96. ¹H NMR spectrum of 4c (CDCl₃, 401 MHz)

Figure S97. ¹³C NMR spectrum of 4c (CDCl₃, 151 MHz)

Figure S98. ¹⁹F NMR spectrum of 4c (CDCl₃, 377 MHz)

Figure S99. ¹H NMR spectrum of 4d (CDCI₃, 401 MHz)

Figure S102. ¹³C NMR spectrum of 4e (CDCl₃, 101 MHz)

Figure S103. ¹⁹F NMR spectrum of **4e** (CDCl₃, 377 MHz)

Figure S105. ¹³C NMR spectrum of 4f (CDCl₃, 101 MHz)

Figure S106. ¹⁹F NMR spectrum of 4f (CDCl₃, 377 MHz)

Figure S109. ¹⁹F NMR spectrum of 4g (CDCl₃, 377 MHz)

Figure S111. ¹³C NMR spectrum of 4h (CDCl₃, 101 MHz)

Figure S112. ¹⁹F NMR spectrum of 4h (CDCl₃, 377 MHz)

Figure S114. ¹³C NMR spectrum of 4i (CDCl₃, 101 MHz)

Figure S115. ¹⁹F NMR spectrum of 4i (CDCl₃, 377 MHz)

Figure S118. ¹⁹F NMR spectrum of 5f (CDCl₃, 377 MHz)

Figure S120. ¹³C NMR spectrum of 5a (CDCl₃, 151 MHz)

Figure S121. ¹⁹F NMR spectrum of 5a (CDCl₃, 377 MHz)

Figure S123. ¹³C NMR spectrum of 5b (CDCl₃, 101 MHz)

Figure S124. ¹⁹F NMR spectrum of 5b (CDCl₃, 471 MHz)

Figure S126. ¹³C NMR spectrum of 5c (CDCl₃, 126 MHz)

Figure S127. ¹⁹F NMR spectrum of 5c (CDCl₃, 377 MHz)

Figure S129. ¹³C NMR spectrum of 5d (CDCl₃, 101 MHz)

Figure S130. ¹⁹F NMR spectrum of 5d (CDCl₃, 377 MHz)

Figure S132. ¹³C NMR spectrum of 5e (CDCl₃, 126 MHz)

Figure S133. ¹⁹F NMR spectrum of **5e** (CDCl₃, 377 MHz)

Figure S134. ¹H NMR spectrum of 6a (CDCl₃, 401 MHz)

Figure S135. ¹³C NMR spectrum of 6a (CDCl₃, 101 MHz)

Figure S136. ¹⁹F NMR spectrum of 6a (CDCl₃, 377 MHz)

Figure S137. ¹H NMR spectrum of 6b (CDCl₃, 401 MHz)

Figure S138. ¹³C NMR spectrum of 6b (CDCl₃, 101 MHz)

Figure S139. ¹H-¹³C HMBC spectrum of 6b

Figure S140. ¹⁹F NMR spectrum of 6b (CDCl₃, 377 MHz)

Figure S142. ¹³C NMR spectrum of 6c (CDCl₃, 101 MHz)

Figure S143. ¹⁹F NMR spectrum of 6c (CDCl₃, 377 MHz)

Figure S145. ¹³C NMR spectrum of 6d (CDCl₃, 101 MHz)

Figure S146. ¹⁹F NMR spectrum of 6d (CDCl₃, 377 MHz)

Figure S147. ¹H NMR spectrum of 6e (CDCl₃, 401 MHz)

Figure S148. ¹³C NMR spectrum of 6e (CDCl₃, 126 MHz)

Figure S149. ¹⁹F NMR spectrum of 6e (CDCl₃, 377 MHz)

Figure S151. ¹³C NMR spectrum of 6f (CDCl₃, 101 MHz)

Figure S152. ¹⁹F NMR spectrum of 6f (CDCl₃, 377 MHz)

Figure S156. ¹³C NMR spectrum of 7a (CDCl₃, 101 MHz)

Figure S157. ¹⁹F NMR spectrum of 7a (CDCl₃, 377 MHz)

Figure S159. ¹³C NMR spectrum of 7b (CDCl₃, 101 MHz)

Figure S160. ¹⁹F NMR spectrum of **7b** (CDCl₃, 377 MHz)

Figure S162. ¹³C NMR spectrum of 7c (*d*₆-Acetone, 400 MHz)

Figure S163. ¹⁹F NMR spectrum of 7c (*d*₆-Acetone, 376 MHz)

