Electronic supporting information for:

Synthetic approach to iodosulfuron-methyl and metsulfuron-methyl metabolites and their application for water analysis

Marcin Rakowiecki^a, Sylwia Studzińska^b, Jacek Ścianowski^b, Mariusz J. Bosiak^{c,d}, Andrzej Wolan^{a,b}, Marcin Budny^{*,a}

^a Synthex Technologies Sp. z o.o., Gagarina 7/134B, 87-100 Toruń, Poland. ^b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland. ^c Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland, ^d Noctiluca S.A., Gagarina 7/41B, 87-100 Toruń, Poland.

Table of contents

Scheme S1. Plausible MS/MS fragmentations of 3/4 and 6/7	2
Figure S1. ESI MS/MS chromatograms of compounds 1-13	3
Table S1. Retention times and MRM conditions for compounds 1-13.	4
Table S2. Analytical parameters for determination of compounds 1-13.	5
¹ H NMR and ¹³ C NMR spectra	6

Scheme S1. Plausible MS/MS fragmentations of 3/4 and 6/7

Figure S1. ESI MS/MS chromatograms of compounds 1-13

Compound	Retention time [min]	Precursor ion	Product ions	Dwell time [ms]	Q1 [V]	CE	Q3 [V]
1 14	14.00	507.80	166.95	56.0	-26.0	-25.0	-28.0
	14.90		55.90	56.0	-26.0	-55.0	-20.0
2	12.00	381.70	166.95	37.0	-19.0	-19.0	-30.0
2	13.09		198.90	37.0	-19.0	-22.0	-17.0
3	13.67	493.80	152.90	37.0	-24.0	-21.0	-25.0
			126.90	37.0	-24.0	-24.0	-20.0
4	14.10	493.80	166.90	37.0	-24.0	-22.0	-29.0
			140.95	37.0	-24.0	-28.0	-22.0
5	13.73	397 90	167.00	37.0	-30.0	-18.0	-29.0
		397.90	57.90	37.0	-30.0	-54.0	-21.0
6	12.06	367.90	153.00	37.0	-29.0	-14.0	-26.0
			126.95	37.0	-29.0	-17.0	-21.0
7	12.51	367.80	167.05	37.0	-26.0	-18.0	-30.0
			58.00	37.0	-26.0	-41.0	-20.0
g	10.54	183 90	141.00	37.0	-21.0	-13.0	-24.0
	10.54	105.50	42.85	37.0	-21.0	-31.0	-16.0
9	3 96	169.90	127.00	264.0	-18.0	-12.0	-20.0
-			42.85	264.0	-18.0	-34.0	-13.0
10	6.78	140.70	56.95	264.0	-30.0	-19.0	-20.0
			41.85	264.0	-30.0	-25.0	-13.0
11	1.74	127.20	42.85	264.0	-13.0	-16.0	-15.0
			41.95	264.0	-13.0	-25.0	-14.0
1 7 ª)	11.02	229.90	197.90	37.0	+17.0	+14.0	+19.0
			135.00	37.0	+17.0	+22.0	+23.0
13	11.06	258.90	198.90	37.0	-28.0	-9.0	-19.0
12			76.95	37.0	-28.0	-38.0	-29.0

Table S1. Retention times and MRM conditions for compounds 1-13.

a) The MRM performed in negative mode.

Compound	Regression equation	R ²	LOD [ng/mL]	LOQ [ng/mL]	RSD (%) Intra-day precision 25 [ng/mL]	RSD (%) Intra-day precision 200 [ng/mL]	RSD (%) Intra-day precision 500 [ng/mL]	RSD (%) Inter-day precision 25 [ng/mL]	RSD (%) Inter-day precision 200 [ng/mL]	RSD (%) Inter-day precision 500 [ng/mL]	Recovery [%] 50 [ng/mL]	Recovery [%] 300 [ng/mL]
1	y = 994913x + 5304.8	0.9991	1.5	5.0	3.7	2.8	3.4	2.2	3.0	2.6	99 ± 5	101 ± 3
2	y = 501575x + 4875.9	0.9997	3.0	10.0	4.2	5.2	4.1	2.1	4.4	3.2	105 ± 1	103 ± 1
3	y = 575947x + 1201.2	0.9997	3.0	10.0	4.0	3.3	3.2	4.2	2.0	3.1	94 ± 4	105 ± 3
4	y = 502142x + 1677.8	0.9992	1.5	5.0	4.1	2.5	4.4	5.2	4.1	4.6	83 ± 5	91 ± 2
5	y = 549107x + 3335.7	0.9993	1.5	5.0	2.5	1.2	3.6	2.8	2.9	2.9	93 ± 4	101 ± 5
6	y = 292160x + 1085.7	0.9989	3.0	10.0	5.5	1.6	2.1	4.0	4.0	3.0	99 ± 2	102 ± 5
7	y = 343333x + 1311	0.9993	1.5	5.0	4.2	2.4	2.6	4.5	1.8	4.1	92 ± 3	79 ± 5
8	y = 845574x + 4800.4	0.9990	3.0	10.0	3.9	1.1	2.5	4.1	1.9	3.0	102 ± 4	103 ± 4
9	y = 269056x - 406.02	0.9999	3.0	10.0	4.1	3.9	3.9	3.2	3.4	4.8	101 ± 3	105 ± 1
10	y = 160621x + 843.99	0.9997	7.5	25.0	2.2	2.9	2.6	4.9	3.9	2.8	104 ± 3	105± 2
11	y = 94693x + 76.7	0.9996	60.0	200.0	nd.	4.0	4.9	nd.	4.8	5.0	102 ± 5	104 ± 4
12	y = 256865x + 5107.5	0.9989	3.0	10.0	1.2	4.8	2.6	4.5	4.5	4.5	105 ± 4	102 ± 4
13	y = 637448x + 2656.2	0.9990	1.5	5.0	4.6	2.2	2.2	4.1	3.3	3.7	98 ± 4	80 ± 5

Table S2. Analytical parameters for determination of compounds 1-13.

¹H NMR and ¹³C NMR spectra

