DFT Study of Oxygen Reduction Reaction Catalyzed by Single Fe Atom Catalyst Decorated with Axial Ligand

Qian Xue^{a,b}, Xuede Qi^{a,b}, Kun Li^a, Yi Zeng^a, Feng Xu^a, Kai Zhang^a, Xueqiang Qi ^{a,b, *}, Li Li^{c, *}, Andreu Cabot^{b,d,*}

^a College of Chemistry and Chemical Engineering, Chongqing University of

Technology, Chongqing 400054, China. Email: xqqi@cqut.edu.cn

^b Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona

08930, Spain. Email: acabot@irec.cat

° School of Chemistry and Chemical Engineering, Chongqing University, Chongqing

400044, China. Email: liliracial@cqu.edu.cn

^d ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Catalonia, Spain

Figure S1 The Bader charge analysis of FeN₄, FeN₄P, FeN₄S, and FeN₄Cl, respectively.

Figure S2 The geometric arrangements of OOH, O, and OH adsorbed on the surfaces of (a) FeN₄, (b) FeN₄P, (c) FeN₄S, and (d) FeN₄Cl during catalytic ORR.

Figure S3 Schematic of the ORR. The inset in the cycle shows the free energy diagram for oxygen reduction reaction on (a) FeN_4P and (b) FeN_4S .

System	Adsorption free energy $(\Delta G_{ads}) / eV$		
	*OOH	*0	*OH
FeN ₄	3.62	1.45	0.65
FeN ₄ P	4.71	3.35	1.70
FeN ₄ S	4.78	3.42	1.63
FeN ₄ Cl	4.20	2.31	1.17

Table S1 The adsorption free energy of ORR intermediates on various catalysts.