Significantly Enhanced Catalytic Performance of Pd Nanocatalyst on AlOOH Featuring Abundant Solid Surface Frustrated Lewis Pair for Improved Hydrogen Activation

Junwei Li,^a Hongshuai Yin,^a Sisi Liu,^a Chaofa Xu,^{*a,b} and Zhixiong Cai^{*a,b}

a College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, China

b Fujian Provincial Key Laboratory of Modern Separation and Analysis Science and Technology, Zhangzhou, China

Figure S1. Schematic of the synthesis of AlOOH with different crystallinities.

Figure S2. FT-IR spectra of pyridine adsorption on AlOOH-80. The absorption peak at 1647 cm⁻¹ corresponded to the coordination of pyridine molecules with unsaturated Al sites (Lewis acid sites) exposed on the surface. The absorption peak at 1615 cm⁻¹ was attributed to surface hydroxyl groups or adsorbed water, while at 1567 cm⁻¹, protonation of pyridine by the surface -OH groups was indicated.

Figure S3. N₂ adsorption-desorption isotherms and pore diameter distribution curve of AlOOH-80.

Figure S4. Pd/AlOOH-80 compared with commercial palladium on C (Pd/C) for catalytic performance.

Figure S5. Catalytic performance of hydrogenation of phenylacetylene on Pd/AlOOH-80 with different Pd loadings.

Figure S6. XRD patterns of commercial Pd/Al₂O₃ and commercial Pd/C. The average size of nanoparticles was calculated using the Scherrer equation based on the half-width of peaks.

Entry	Catalyst	O _{adH2O} /O _{Total} (%)
1	AlOOH-80	8.7
2	Alooh-RT	17.2
3	Alooh-ss	22.5

Table S1. Results of XPS analysis of O1s of the AlOOH catalysts

Table S2. The Pd content in Pd/AlOOH-80 catalyst was measured by ICP-AES.

Entry	Catalyst	Theoretical load (wt%)	Actual load (wt%)
1	AlooH-80	0.3	0.4
2	Alooh-80	0.7	0.7
3	AlooH-80	1.5	1.7
4	A100H-80	2.5	2.2

Entry	Catalyst	T (°C)	Hydrogen source	Time	Con. (%)	Reaction rate (h ⁻¹)	Ref.
1	$Pd_2Cu_2@\alpha-Al_2O_3$	30	0.1 MPa H ₂	70 min	>99.9	146.2	1
2	Pd ₁ /NC-PHF	60	0.5 MPa H ₂	2 h	93.1	88.5	2
3	Pd ₁ /BP	80	$2 \text{ bar } H_2$	4 h	95	133.0	3
4	Pd _{4.5} Se NCs/C	110	0.1 MPa H ₂	1.5 h	100	358.6	4
5	PdCu ₂ @MF-H	30	0.1 MPa H ₂	4 h	100	125.9	5
6	PdCu@Cu ₂ O	30	0.1 MPa H ₂	80 min	>99	1500.0	6
7	Pd ₁ /Cu ₂ O	30	0.1 MPa H ₂	60 min	100	500.0	7
8	Pd/AlOOH-80	30	0.1 MPa H ₂	40 min	100	4500.0	This work

Table S3. Catalytic performance comparison between Pd/AlOOH-80 and previously reported catalysts of the hydrogenation of phenylacetylene.

Reaction rate = ______

moles of Pd \times reaction time (h)

References

- J. Li, W. Suo, Y. Huang, M. Chen, H. Ma, C. Liu, H. Zhang, K. Liang, Z. J. J. o. C. Dong and I. Science, 2023, 652, 1053-1062.
- S. Li, G. Yue, H. Li, J. Liu, L. Hou, N. Wang, C. Cao, Z. Cui and Y. J. C. E. J. Zhao, 2023, 454, 140031.
- C. Chen, W. Ou, K. M. Yam, S. Xi, X. Zhao, S. Chen, J. Li, P. Lyu, L. Ma and Y. J. A. M. Du, 2021, 33, 2008471.
- 4. M. Wang, L. Liang, X. Liu, Q. Sun, M. Guo, S. Bai and Y. J. J. o. C. Xu, 2023, **418**, 247-255.
- M. Guo, Q. Meng, W. Chen, Z. Meng, M. L. Gao, Q. Li, X. Duan and H. L. J. A. C. Jiang, 2023, 135, e202305212.
- K. Liu, L. Jiang, W. Huang, G. Zhu, Y.-J. Zhang, C. Xu, R. Qin, P. Liu, C. Hu and J. J. N. C. Wang, 2022, 13, 2597.
- K. Liu, R. Qin, L. Zhou, P. Liu, Q. Zhang, W. Jing, P. Ruan, L. Gu, G. Fu and N. J. C. C. Zheng, 2019, 207-214.