Supporting information

Supplemental figures

Fig. S1 SEM images of (a) Ti_3AlC_2 and (b) MX.

Fig. S2. SEM-EDS-Mapping images of Ag and Ti elements over AT sample.

Fig. S3. XPS full spectra of the MXns, ZnO, and ATZ

Fig. S4. XPS spectra of Ti 2p for AT.

Fig. S5. XPS spectra of Ag 3d for 1ATZ.

Fig. S6. CO yield plots of xAT and xATZ.

Fig. S7. SEM images of 2ATZ.

Fig. S8. XPS spectra of (a) full spectra (b) Zn 2p (c) Ti 2p for 1ATZ before and after use.

Fig. S9. UV-vis absorption spectra of MXns.

Fig. S10. In-situ DRIFTS spectra of CO_2 adsorption on 1ATZ and ZnO in the presence of CO_2/H_2O for 5 min in the dark.

Table S1. Specific surface area and pore size of the samples

Samples	Specific surface area (SSA) (m ² ·g ⁻¹)	Pore size (nm)	Pore volume ($cm^3 \cdot g^{-1}$)
ZnO	91.794	7.304	0.212
MXns	81.557	4.573	0.083
1ATZ	153.298	7.275	0.299

[1] C. Yang, Q. Tan, Q. Li, *et al.*, 2D/2D Ti₃C₂ MXene/g-C₃N₄ nanosheets heterojunction for high efficient CO₂ reduction photocatalyst: Dual effects of urea, Appl. Catal. B-Environ., 268 (2020) 118738.

[2] Q. Tang, Z. Sun, S. Deng, *et al.*, Decorating g-C₃N₄ with alkalinized Ti₃C₂ MXene for promoted phoghtatalyticOoproduction performation performant of Colloid and Materials references Interface Science, 564 (2020) 406-417 rate (µmol/g/h) [3] W Z Lin M X Sun Z.P. Ding. *et al.*, Ti₃C₂ MXene embellished g-C₃N₄

Interface Science, 564 (2020) 400-417 (μ mol/g/h) rate (μ mol/g/h) [3] W.Z. Liu, M.X. Sun, Z.P. Ding, *et al.*, Ti₃C₂ MXene embellished g-C₃N₄ nanosheets for improving Wphotocatalytic redox capacity, Journal of Alloys and Compounds; 3877 (2021). 5.19 0.04 ^[1] [4] B. Yu, Y. Zhou, P. Li, *et al.*, Photocatalytic reduction of CO₂ over Ag/TiO₂

[4] B. Yu, Y. Zhou, P. Li, *et al.*, Photocatalytic reduction of CO₂ over Ag/TiO₂ nanocomposites prepated with a simple and rapid silver mirror method, Nanoscale, 8 (2) 16) N4870Cp1874. 2.24 0.05 ^[2] Xe lamp [5] F. He, B. Zhu, B. Cheng, *et al.*, 2D/2D/0D TiO₂/C₃N₄/Ti₃C₂ MXene composite

[5] F. He, B. Zhu, B. Cheng, *et al.*, 2D/2D/0D TiO₂/C₃N₄/Ti₃C₂ MXene composite S-scheme photocatalys00iW enhanced CO₂ reduction activity, Appl. Catal. B-Environ., $272^{-}(2020)^{-}$ 139006. 2.67 0.66 ^[3]

[6] W.N. Shi, R. Zhang, J.C. Wang, *et al.*, One-pot hydrothermal preparation of Ni and I co-doped brook Me-anatase TiO₂ nanoparticles with remarkably enhanced photoredization activity of CO₂ to CH₄, Journal of Catalysis, 429 (2024). ^[4]

[7] T.T. Li, R. Tao, Y.X. Wang, *et al.*, Construction of bismuth oxide iodide (BiOI)/zinc titanium $30018V(Zn_2TiO_4)$ p-n heterojunction nanofibers with abundant TiO_2C Variaties for improving photocatalytic carbon dioxide reduction, Journal of Colloid and Interface Science, 655 (2024) 841-851.

[8] R.A. Mahmud300AVAli, L.K. Putri, *et al.*, ZnO with engineered surface defects as $\frac{2 \text{Ni}/91}{\text{Cmp}}$ photocatalyst for CO₂²² photoreduction into⁵⁵ valuable fuels^[6] under simulated solar light irradiation, Journal of Environmental Chemical Engineering, 11 (2023) 300 W

(2023). BiOI/7n TiO	300 W	0.10	1	[7]
BIOI/21121104	Xe lamp	9.10	I	ſ.1
ZnO	500 W	1	<0.042	[8]
nanoparticles	Xe lamp	7	<0.045	
Ag-Ti ₃ C ₂ T _x /ZnO	300 W	11 095	0 769	This would
	Xe lamp	11.985	0.708	This work

Table S2. Comparison of photocatalytic reduction activities of similar catalysts