Supporting Information

Ts₂O Mediated Deoxygenative C2-dithiocarbamation of Quinoline N-

oxides with CS_2 and Amines

Long-Yong Xie*, Chu Liu#, Si-Yu Wang#, Zhong-Ying Tian, and Sha Peng*

College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou

425100, China

longyongxie@yeah.net

Table of Content

1. General information	S2
2. Experimental Section	S2
3. Characterization data of products	\$3
4. NMR spectrum of products	S14

1. General information

Unless otherwise noted, all solvents and reagents in this study were commercial and used without further purification. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at 400, 100 and 376 MHz, respectively. Chemical shifts were quoted in ppm relative to $CDCl_3$ ($\delta_H = 7.26$, $\delta_C = 77.0$ ppm). Datas are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, etc. Azine *N*-oxides **1a**, **1t**, **1u**, **1v**, **1w** and **1y** are commercially available and other quinoline *N*-oxides were prepared according to the relevant literatures. The reactions were monitored by thin-layer chromatography (TLC) using GF254 silica gel-coated TLC plates. Mass spectra were performed on a spectrometer operating on ESI-TOF. Melting points were measured on a melting point apparatus and were uncorrected.

2. Experimental Section

General procedure for the synthesis of quinoline-dithiocarbamates 3

To a round bottom flask was consecutively added quinoline *N*-oxide **1** (0.3 mmol), CS₂ (0.45 mmol), amine **2** (0.45 mmol) and Ts₂O (0.45 mmol) in CH₂Cl₂ (3 mL). The reaction mixture was stirred at room temperature for about 0.5 h. The reaction was monitored by TLC. Upon completion, CH₂Cl₂ (10 mL) and water (10 mL) were added to the mixture, the organic layer was separated and the aqueous layer was further extracted with CH₂Cl₂ (2 × 10 mL). The organic phases were combined and dried with anhydrous Na₂SO₄, followed by filtration and concentration under vacuo. The residue was purified by flash chromatography column over silica gel to afford the desired products **3**.

Procedure for gram-scale Synthesis of 3aa

To a round bottom flask was consecutively added quinoline *N*-oxide **1a** (5 mmol, 0.7253 g), CS_2 (7.5 mmol, 0.5696 g), diethylamine **2a** (7.5 mmol, 0.5482 g) and Ts_2O (7.5 mmol, 2.4452 g) in CH_2Cl_2 (50 mL). The reaction mixture was stirred at room temperature for about 0.5 h. Upon completion, water (30 mL) was added to quench the reaction. The organic layer was separated and the aqueous layer was further extracted with CH_2Cl_2 (2 × 20 mL). The organic phases were combined and dried with anhydrous Na_2SO_4 , followed by filtration and concentration under vacuo. The residue was purified by flash chromatography column over silica gel to afford 1.0905 g of **3aa**, yield: 79%.

3. Characterization data of products

quinolin-2-yl diethylcarbamodithioate (3aa): Yellow solid (68.2 mg, 82%), mp: 118–119 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.70 (t, *J* = 8.6 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 3.99 (q, *J* = 6.8 Hz, 2H), 3.83 (q, *J* = 6.8 Hz, 2H), 1.39 (t, *J* = 6.9 Hz, 3H), 1.26 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 153.9, 148.2, 136.2, 129.6, 129.5, 129.3, 127.5, 127.4, 127.3, 49.1, 47.7, 12.7, 11.4; HRMS (ESI) m/z calcd. for C₁₄H₁₇N₂S₂ [M+H]⁺ : 277.0828, found 277.0829.

3-methylquinolin-2-yl diethylcarbamodithioate (3ba): Yellow solid (62.9 mg, 72%), mp: 122– 123 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 8.5 Hz, 1H), 8.01 (s, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 4.00 (q, *J* = 7.0 Hz, 2H), 3.86 (q, *J* = 7.0 Hz, 2H), 2.60 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.0, 154.2, 147.1, 136.9, 136.1, 129.4, 128.8, 128.5, 127.6, 126.7, 48.9, 47.8, 20.5, 12.8, 11.5; HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂S₂ [M+H]⁺ : 291.0984, found 291.0986.

3-chloroquinolin-2-yl diethylcarbamodithioate (3ca): Yellow solid (63.2 mg, 68%), mp: 112–114 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.81 – 7.68 (m, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 4.02 (q, *J* = 6.7 Hz, 2H), 3.87 (q, *J* = 6.7 Hz, 2H), 1.44 (t, *J* = 6.9 Hz, 3H), 1.30 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.7, 152.1, 146.5, 136.1, 133.4, 129.9, 129.6, 128.6, 128.5, 126.6, 49.1, 48.2, 12.9, 11.5; HRMS (ESI) m/z calcd. for C₁₄H₁₆ClN₂S₂ [M+H]⁺ : 311.0438, found 311.0440.

3-bromoquinolin-2-yl diethylcarbamodithioate (3da): Yellow solid (67.1 mg, 63%), mp: 116– 117 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 7.82 – 7.72 (m, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 4.04 (q, *J* = 7.0 Hz, 2H), 3.87 (q, *J* = 7.1 Hz, 2H), 1.45 (t, *J* = 7.1 Hz, 3H), 1.32 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.9, 153.4, 147.0, 139.9, 130.1, 129.7, 128.7, 128.6, 126.6, 124.1, 49.1, 48.3, 13.0, 11.5; HRMS (ESI) m/z calcd. for C₁₄H₁₆BrN₂S₂ [M+H]⁺: 354.9933, found 354.9937.

3-phenylquinolin-2-yl diethylcarbamodithioate (3ea): Yellow solid (81.3 mg, 77%), mp: 124– 125 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.5 Hz, 1H), 8.10 (s, 1H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.61 – 7.52 (m, 3H), 7.41 – 7.34 (m, 3H), 3.84 (q, *J* = 6.8 Hz, 2H), 3.60 (q, *J* = 6.9 Hz, 2H), 1.17 (t, *J* = 7.0 Hz, 3H), 1.09 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.0, 153.1, 147.5, 139.8, 139.0, 137.6, 129.8, 129.6, 129.4, 127.8, 127.5, 127.4, 127.4, 48.7, 47.8, 12.6, 11.3; HRMS (ESI) m/z calcd. for C₂₀H₂₁N₂S₂ [M+H]⁺ : 353.1141, found 353.1146.

4-methylquinolin-2-yl diethylcarbamodithioate (3fa): Yellow solid (59.4 mg, 68%), mp: 116– 117 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 8.3 Hz, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.64 – 7.54 (m, 2H), 4.02 (q, *J* = 6.6 Hz, 2H), 3.86 (q, *J* = 6.7 Hz, 2H), 2.71 (s, 3H), 1.41 (t, *J* = 6.9 Hz, 3H), 1.29 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.1, 153.6, 148.1, 144.8, 130.2, 129.7, 129.4, 127.6, 127.4, 123.7, 49.1, 47.8, 18.6, 12.7, 11.5; HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂S₂ [M+H]⁺ : 291.0984, found 291.0986.

6-methylquinolin-2-yl diethylcarbamodithioate (3ga): Yellow solid (67.2 mg, 77%), mp: 127–128 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 7.99 (m, 2H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.58 (s, 1H), 7.54 (d, *J* = 8.7 Hz, 1H), 4.01 (q, *J* = 7.0 Hz, 2H), 3.85 (q, *J* = 7.0 Hz, 2H), 2.52 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.2, 152.8, 146.9, 137.7, 135.7, 131.9, 129.4, 129.3, 127.5, 126.4, 49.1, 47.7, 21.6, 12.7, 11.5; HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂S₂ [M+H]⁺ : 291.0984, found 291.0987.

6-methoxyquinolin-2-yl diethylcarbamodithioate (3ha): Yellow solid (77.4 mg, 84%), mp: 121–122 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (t, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 1H), 7.36 (d, *J* = 9.2 Hz, 1H), 7.09 (s, 1H), 4.02 (q, *J* = 6.9 Hz, 2H), 3.94 (s, 3H), 3.87 (q, *J* = 7.0 Hz, 2H), 1.43 (t, *J* = 7.0 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.7, 158.7, 150.9, 144.6, 135.2, 131.2, 130.0, 128.8, 122.5, 105.1, 55.6, 49.3, 47.7, 12.8, 11.5; HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂OS₂ [M+H]⁺ : 307.0933, found 307.0933.

6-fluoroquinolin-2-yl diethylcarbamodithioate (3ia): Yellow solid (69.0 mg, 78%), mp: 101–102 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 – 8.06 (m, 2H), 7.74 (d, J = 8.5 Hz, 1H), 7.55 – 7.39 (m, 2H), 4.02 (q, J = 7.0 Hz, 2H), 3.86 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.8, 161.1 (d, $J_{C-F} = 248.4$ Hz), 153.3 (d, $J_{C-F} = 3.0$ Hz), 145.4, 135.6 (d, $J_{C-F} = 5.4$ Hz), 132.2 (d, $J_{C-F} = 9.2$ Hz), 130.3, 128.3 (d, $J_{C-F} = 10.2$ Hz), 119.9 (d, $J_{C-F} = 25.6$ Hz), 110.7 (d, $J_{C-F} = 21.8$ Hz), 49.3, 47.9, 12.8, 11.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.29; HRMS (ESI) m/z calcd. for C₁₄H₁₆FN₂S₂ [M+H]⁺ : 295.0733, found 295.0735.

6-chloroquinolin-2-yl diethylcarbamodithioate (3ja): Yellow solid (70.9 mg, 76%), mp: 122–123 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 – 8.00 (m, 2H), 7.80 (s, 1H), 7.73 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 8.7 Hz, 1H), 4.01 (q, *J* = 6.9 Hz, 2H), 3.85 (q, *J* = 7.0 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.5, 154.4, 146.6, 135.2, 133.4, 131.1, 130.6, 130.3, 128.0, 126.2, 49.2, 47.9, 12.8, 11.5; HRMS (ESI) m/z calcd. for C₁₄H₁₆ClN₂S₂ [M+H]⁺ : 311.0438, found 311.0435.

6-bromoquinolin-2-yl diethylcarbamodithioate (3ka): Yellow solid (89.5 mg, 84%), mp: 133–134 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 8.5 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.76 (dd, *J* = 14.2, 8.9 Hz, 2H), 4.01 (q, *J* = 6.9 Hz, 2H), 3.86 (q, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.29 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.4, 154.6, 146.8, 135.1, 133.2, 131.3, 130.3, 129.6, 128.5, 121.7, 49.2, 47.9, 12.8, 11.5; HRMS (ESI) m/z calcd. for C₁₄H₁₆BrN₂S₂ [M+H]⁺ : 354.9933, found 354.9938.

Methyl 2-((diethylcarbamothioyl)thio)quinoline-6-carboxylate (3la): Yellow solid (63.1 mg, 63%), mp: 132–133 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.60 (s, 1H), 8.34 – 8.23 (m, 2H),

8.19 (dd, *J* = 8.8, 3.0 Hz, 1H), 7.82 (dd, *J* = 8.4, 3.1 Hz, 1H), 4.07 – 3.83 (m, 7H), 1.52 – 1.24 (m, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.9, 166.4, 156.8, 149.8, 137.4, 130.6, 130.0, 129.7, 129.4, 129.0, 126.6, 52.5, 49.3, 48.1, 12.9, 11.5; HRMS (ESI) m/z calcd. for C₁₆H₁₉N₂O₂S₂ [M+H]⁺ : 335.0882, found 335.0885.

7-*methylquinolin-2-yl diethylcarbamodithioate (3ma)*: Yellow solid (59.4 mg, 68%), mp: 126– 127 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.4 Hz, 1H), 7.92 (s, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 4.02 (q, J = 6.9 Hz, 2H), 3.87 (q, J= 7.0 Hz, 2H), 2.55 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.2, 153.8, 148.6, 140.1, 136.1, 129.9, 128.6, 128.6, 127.2, 125.5, 49.2, 47.8, 21.9, 12.8, 11.5; HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂S₂ [M+H]⁺ : 291.0984, found 291.0985.

7-(trifluoromethyl)quinolin-2-yl diethylcarbamodithioate (3na): Yellow solid (74.3 mg, 72%), mp: 134–135 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 (s, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.73 (d, J = 8.5 Hz, 1H), 4.01 (q, J = 6.9 Hz, 2H), 3.86 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.0, 156.0, 147.1, 135.9, 131.5, 131.2, 128.8, 128.7, 127.3 (q, J_{C-F} = 4.4 Hz), 123.7 (q, J_{C-F} = 270.9 Hz), 123.2 (q, J_{C-F} = 3.0 Hz), 49.2, 48.0, 12.8, 11.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.73; HRMS (ESI) m/z calcd. for C₁₅H₁₆F₃N₂S₂ [M+H]⁺ : 345.0702, found 345.0706.

8-methylquinolin-2-yl diethylcarbamodithioate (3oa): Yellow solid (65.5 mg, 75%), mp: 71–72
°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.11 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 6.9 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 4.05 (q, J = 6.9 Hz, 2H), 3.89 (q, J = 7.0 Hz, 2H), 2.81 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.0 Hz, 3H); ¹³C NMR

(100 MHz, Chloroform-*d*) δ 193.3, 153.3, 147.5, 137.6, 136.3, 129.8, 128.7, 127.4, 127.3, 125.5, 49.2, 47.9, 18.0, 12.9, 11.6; HRMS (ESI) m/z calcd. for C₁₅H₁₉N₂S₂ [M+H]⁺ : 291.0984, found 291.0987.

8-(4-bromophenyl)quinolin-2-yl diethylcarbamodithioate (3pa): Yellow solid (87.9 mg, 68%), mp: 74–75 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.78 – 7.70 (m, 2H), 7.62 (dt, *J* = 26.1, 8.2 Hz, 5H), 4.03 (q, *J* = 6.9 Hz, 2H), 3.84 (q, *J* = 6.9 Hz, 2H), 1.37 (t, *J* = 7.0 Hz, 3H), 1.31 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.7, 154.6, 145.5, 139.3, 137.8, 136.4, 132.6, 130.9, 130.3, 128.5, 127.8, 127.6, 127.2, 121.7, 49.1, 48.1, 12.9, 11.5; HRMS (ESI) m/z calcd. for C₂₀H₂₀BrN₂S₂ [M+H]⁺ : 431.0246, found 431.0252.

6-bromo-4-methoxyquinolin-2-yl diethylcarbamodithioate (3qa): Yellow solid (83.2 mg, 72%), mp: 124–125 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.33 (s, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.75 (d, J = 9.3 Hz, 1H), 7.15 (s, 1H), 4.08 – 3.97 (m, 5H), 3.85 (q, J = 6.9 Hz, 2H), 1.41 (t, J = 7.0 Hz, 3H), 1.29 (t, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.4, 161.1, 155.3, 147.4, 133.5, 130.8, 124.5, 122.0, 120.8, 109.2, 56.1, 49.2, 47.8, 12.8, 11.5; HRMS (ESI) m/z calcd. for C₁₅H₁₈BrN₂OS₂ [M+H]⁺ : 385.0038, found 385.0034.

4-chloro-6-fluoroquinolin-2-yl diethylcarbamodithioate (3ra): Yellow solid (63.2 mg, 64%), mp: 126–127 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (dd, *J* = 9.1, 5.3 Hz, 1H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.52 (t, *J* = 8.4 Hz, 1H), 4.00 (q, *J* = 7.1 Hz, 2H), 3.83 (q, *J* = 7.2 Hz, 2H), 1.41 (t, *J* =

7.1 Hz, 3H), 1.28 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.9, 161.8 (d, $J_{C-F} = 249.8$ Hz), 153.0, 145.7, 141.2 (d, J = 5.7 Hz), 132.7 (d, J = 9.2 Hz), 130.1, 129.7, 120.8 (d, J = 25.8 Hz), 108.1 (d, J = 24.4 Hz), 49.3, 47.9, 12.8, 11.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 108.76; HRMS (ESI) m/z calcd. for C₁₄H₁₅ClFN₂S₂ [M+H]⁺ : 329.0344, found 329.0346.

IH-pyrrolo[2,3-*b*]*pyridin-6-yl diethylcarbamodithioate (3sa)*: Pale yellow solid (62.3 mg, 78%), mp: 174–4175 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 11.31 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 7.5 Hz, 2H), 6.53 (s, 1H), 4.05 (q, *J* = 6.9 Hz, 2H), 3.90 (q, *J* = 6.9 Hz, 2H), 1.45 (t, *J* = 7.0 Hz, 3H), 1.31 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 195.1, 149.0, 144.1, 129.6, 127.4, 125.0, 120.9, 100.7, 49.4, 47.5, 12.8, 11.6; HRMS (ESI) m/z calcd. for C₁₂H₁₆N₃S₂ [M+H]⁺ : 266.0780, found 266.0783.

4-methylpyridin-2-yl diethylcarbamodithioate (3ta): Yellow oil (44.1 mg, 61%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.53 (s, 1H), 7.47 (s, 1H), 7.15 (s, 1H), 4.09 – 3.94 (m, 2H), 3.81 (s, 2H), 2.39 (s, 3H), 1.39 (t, *J* = 5.6 Hz, 3H), 1.31 – 1.24 (m, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.8, 153.2, 150.1, 148.6, 134.0, 125.1, 49.4, 47.7, 20.9, 12.7, 11.5; HRMS (ESI) m/z calcd. for C₁₁H₁₇N₂S₂ [M+H]⁺ : 241.0828, found 241.0830.

4-methoxypyridin-2-yl diethylcarbamodithioate (3ua): Yellow oil (28.5 mg, 37%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 5.6 Hz, 1H), 7.19 (s, 1H), 6.85 (d, *J* = 4.5 Hz, 1H), 4.00 (q, *J* = 6.8 Hz, 2H), 3.87 (s, 3H), 3.82 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.0 Hz, 3H), 1.27 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.3, 166.2, 154.6, 151.2, 119.0, 110.6, 55.4, 49.4, 12.7, 11.5; HRMS (ESI) m/z calcd. for C₁₁H₁₇N₂OS₂ [M+H]⁺ : 257.0777, found 257.0778.

4-phenylpyridin-2-yl diethylcarbamodithioate (3va): Yellow oil (58.2 mg, 64%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 (d, *J* = 5.1 Hz, 1H), 7.89 (s, 1H), 7.67 (d, *J* = 7.1 Hz, 2H), 7.54 (d, *J* = 4.1 Hz, 1H), 7.47 (q, *J* = 10.0, 8.5 Hz, 3H), 4.03 (q, *J* = 6.6 Hz, 2H), 3.86 (q, *J* = 6.7 Hz, 2H), 1.42 (t, *J* = 6.9 Hz, 3H), 1.29 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.4, 154.2, 150.6, 149.5, 137.3, 131.3, 129.3, 129.1, 127.1, 121.9, 49.5, 47.7, 12.7, 11.5; HRMS (ESI) m/z calcd. for C₁₆H₁₉N₂S₂ [M+H]⁺ : 303.0984, found 303.0989.

quinolin-2-yl dimethylcarbamodithioate (3ab): Yellow solid (62.0 mg, 83%), mp: 133–134 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 – 8.11 (m, 2H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.73 (t, *J* = 8.6 Hz, 2H), 7.59 (t, *J* = 7.5 Hz, 1H), 3.54 (s, 3H), 3.51 (s, 3H); ¹³C NMR (100 MHz, Chloroform *d*) δ 194.5, 153.9, 148.3, 136.6, 129.8, 129.6, 129.1, 127.7, 127.6, 127.5, 45.0, 42.5; HRMS (ESI) m/z calcd. for C₁₂H₁₃N₂S₂ [M+H]⁺ : 249.0515, found 249.0516.

quinolin-2-yl dipropylcarbamodithioate (3ac): Yellow oil (78.7 mg, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 9.1 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 3.94 – 3.81 (m, 2H), 3.79 – 3.66 (m, 2H), 1.95 – 1.71 (m, 4H), 1.00 (t, *J* = 7.1 Hz, 3H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.2, 154.1, 148.1, 136.1, 129.6, 129.4, 129.2, 127.5, 127.4, 127.3, 56.3, 55.3, 20.9, 19.5, 11.1; HRMS (ESI) m/z calcd. for C₁₆H₂₁N₂S₂ [M+H]⁺ : 305.1141, found 305.1144.

quinolin-2-yl dibutylcarbamodithioate (3ad): Yellow oil (80.9 mg, 81%). ¹H NMR (400 MHz,

Chloroform-*d*) δ 8.14 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.1 Hz, 1H), 7.71 (t, J = 9.6 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 4.02 – 3.86 (m, 2H), 3.86 – 3.71 (m, 2H), 1.91 – 1.67 (m, 4H), 1.51 – 1.29 (m, 4H), 1.00 (t, J = 7.3 Hz, 3H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.1, 154.2, 148.2, 136.2, 129.6, 129.6, 129.3, 127.5, 127.5, 127.4, 54.7, 53.6, 29.6, 28.3, 20.0, 13.8, 13.6; HRMS (ESI) m/z calcd. for C₁₈H₂₅N₂S₂ [M+H]⁺ : 333.1454, found 333.1455.

quinolin-2-yl diisobutylcarbamodithioate (3ae): Yellow oil (72.9 mg, 73%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.76 – 7.64 (m, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 3.86 (d, *J* = 7.3 Hz, 2H), 3.70 (d, *J* = 7.4 Hz, 2H), 2.52 – 2.39 (m, 2H), 1.04 (d, *J* = 6.5 Hz, 6H), 0.95 (d, *J* = 6.5 Hz, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.3, 154.6, 148.2, 136.1, 129.6, 129.6, 129.2, 127.5, 127.5, 127.3, 62.7, 62.1, 28.0, 26.2, 20.3, 20.2; HRMS (ESI) m/z calcd. for C₁₈H₂₅N₂S₂ [M+H]⁺ : 333.1454, found 333.1452.

quinolin-2-yl bis(2-methoxyethyl)carbamodithioate (3af): Yellow oil (62.7 mg, 62%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (t, *J* = 8.7 Hz, 2H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 4.29 (t, *J* = 4.9 Hz, 2H), 4.18 (t, *J* = 5.5 Hz, 2H), 3.79 (t, *J* = 5.5 Hz, 2H), 3.72 (t, *J* = 4.9 Hz, 2H), 3.40 (s, 3H), 3.33 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.8, 153.8, 148.3, 136.5, 129.8, 129.6, 129.3, 127.7, 127.5, 127.5, 70.0, 70.0, 59.0, 58.9, 55.5, 54.7; HRMS (ESI) m/z calcd. for C₁₆H₂₁N₂O₂S₂ [M+H]⁺ : 337.1039, found 337.1034.

quinolin-2-yl pyrrolidine-1-carbodithioate (3ag): Yellow solid (71.8 mg, 87%), mp: 135–136 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, *J* = 8.5 Hz, 1H), 8.13 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.79 – 7.68 (m, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 3.91 (t, *J* = 6.9 Hz, 2H), 3.81 (t, *J* = 6.8 Hz, 2H), 2.15 – 2.07 (m, 2H), 2.04 – 1.95 (m, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.0, 153.5, 148.3, 136.4, 129.7, 129.6, 129.1, 127.7, 127.6, 127.5, 54.8, 51.5, 26.3, 24.4; HRMS (ESI) m/z calcd. for C₁₄H₁₅N₂S₂ [M+H]⁺ : 275.0671, found 275.0674.

quinolin-2-yl piperidine-1-carbodithioate (3ah): Yellow solid (72.0 mg, 83%), mp: 107–108 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 – 8.08 (m, 2H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.72 (t, *J* = 7.8 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 4.26 (s, 2H), 3.98 (s, 2H), 1.73 (s, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.6, 154.1, 148.3, 136.3, 129.7, 129.6, 129.1, 127.6, 127.5, 127.4, 52.6, 52.4, 26.2, 25.3, 24.0; HRMS (ESI) m/z calcd. for C₁₅H₁₇N₂S₂ [M+H]⁺ : 289.0828, found 289.0833.

quinolin-2-yl 4-methoxypiperidine-1-carbodithioate (3ai): Yellow solid (77.5 mg, 81%), mp: 100–101 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 – 8.08 (m, 2H), 7.84 (d, *J* = 8.1 Hz, 1H), 7.77 – 7.65 (m, 2H), 7.59 (t, *J* = 7.5 Hz, 1H), 4.52 – 3.94 (m, 4H), 3.62 – 3.53 (m, 1H), 3.38 (s, 3H), 2.04 – 1.74 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.1, 153.9, 148.3, 136.4, 129.8, 129.6, 129.1, 127.7, 127.6, 127.4, 73.8, 56.0, 48.0, 47.9, 30.6, 29.7; HRMS (ESI) m/z calcd. for C₁₆H₁₉N₂OS₂ [M+H]⁺ : 319.0933, found 319.0941.

quinolin-2-yl morpholine-4-carbodithioate (3aj): Yellow solid (72.5 mg, 83%), mp: 167–168 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 8.12 (m, 2H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.78 – 7.66 (m, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 4.43 – 3.96 (m, 4H), 3.85 – 3.76 (m, 4H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 194.5, 153.4, 148.4, 136.6, 129.9, 129.6, 128.9, 127.8, 127.6, 127.5, 66.3, 66.0, 51.4, 51.0; HRMS (ESI) m/z calcd. for C₁₄H₁₅N₂OS₂ [M+H]⁺ : 291.0620, found 291.0624.

quinolin-2-yl azocane-1-carbodithioate (3ak): Yellow solid (72.3 mg, 76%), mp: 79–80 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.72 (t, *J* = 9.1 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 4.20 – 4.08 (m, 2H), 4.04 – 3.94 (m, 2H), 2.05 – 1.91 (m, 4H), 1.79 – 1.52 (m, 8H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.7, 154.2, 148.3, 136.2, 129.7, 129.6, 129.4, 127.6, 127.5, 127.4, 56.1, 55.0, 26.6, 25.6, 25.3, 25.1; HRMS (ESI) m/z calcd. for C₁₇H₂₁N₂S₂ [M+H]⁺ : 317.1141, found 317.1140.

heptan-2-yl2-((5-chloro-2-((diethylcarbamothioyl)thio)quinolin-8-yl)oxy)acetate (4ca): Yellow solid (107.3 mg, 74%), mp: 55–56 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 8.7 Hz, 1H), 7.88 (d, *J* = 8.7 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 4.98 (q, *J* = 6.2 Hz, 1H), 4.91 (s, 2H), 3.99 (q, *J* = 6.6 Hz, 2H), 3.83 (q, *J* = 6.7 Hz, 2H), 1.59 – 1.48 (m, 1H), 1.44 – 1.34 (m, 4H), 1.28 – 1.08 (m, 12H), 0.86 – 0.78 (m, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.4, 168.2, 154.4, 152.9, 140.4, 132.9, 130.8, 127.0, 126.4, 123.3, 110.6, 72.5, 66.7, 49.1, 47.8, 35.5, 31.4, 24.8, 22.4, 19.8, 13.8, 12.8, 11.4; HRMS (ESI) m/z calcd. for C₂₃H₃₂ClN₂O₃S₂ [M+H]⁺ : 483.1537, found 483.1542.

¹³C spectrum of compound **3aa**

¹³C spectrum of compound **3ba**

¹³C spectrum of compound **3ca**

¹³C spectrum of compound **3da**

¹³C spectrum of compound **3ga**

¹³C spectrum of compound **3ia**

¹³C spectrum of compound **3ka**

¹³C spectrum of compound **3la**

¹³C spectrum of compound **3na**

¹³C spectrum of compound **3oa**

¹³C spectrum of compound **3pa**

¹³C spectrum of compound **3qa**

¹³C spectrum of compound **3ra**

¹³C spectrum of compound **3ta**

¹³C spectrum of compound **3ua**

¹³C spectrum of compound **3va**

¹³C spectrum of compound **3ab**

¹³C spectrum of compound **3ac**

¹³C spectrum of compound **3ad**

¹³C spectrum of compound **3ae**

¹³C spectrum of compound **3af**

¹³C spectrum of compound **3ag**

¹³C spectrum of compound **3ah**

¹³C spectrum of compound **3ai**

¹³C spectrum of compound **3aj**

¹³C spectrum of compound **3ak**

¹³C spectrum of compound **4ca**