Supplementary information

Ultrasonic-assisted in-situ synthesis of MOF-199 on the surface of carboxylated cellulose fibers for efficient adsorption of methylene blue

Fig. S1. FTIR spectra of CCF and CF.

Fig. S2. N₂ adsorption-desorption curves of CCF (a); Pore diameter distribution of the three materials (b).

Fig. S3. Particle size distribution of MOF-199.

Fig. S4. Adsorption capacity over time: different adsorbents (a); pH (b); temperature (c); initial concentration (d).

Fig. S5. The isoelectric point (IEP) of MOF-199/CCF.

Fig. S6. Fitting results of MB on MOF-199/CCF by using Langmuir adsorption isotherm model (a); Fitting results of MB on MOF-199/CCF by using Freundlich adsorption isotherm model (b).

Fig. S7. Fitting results of MB on MOF-199/CCF by using Intraparticle diffusion model.

Fig. S8. After soaking in water for 5 days (a), (b) and (c); After 5 cycles of adsorption (d), (e) and (f).

Fig. S9. PXRD characterisation of MOF-199/CCF.

Calculation method for percent composition of MOF-199/CCF.

The amounts of MOF-199 growth in the MOF-199/CCF was calculated by ash content. In order to calculate the loading of MOF-199 on CCF, the thermogravimetric behaviors of MOF-199, MOF-199/CCF and CCF from room temperature to 800 °C were characterized by TGA. As shown in Fig. 2(b), the ash generation ratio of MOF-199, MOF-199/CCF and CCF are 33.55 wt%, 15.54 wt% and 2.70 wt% respectively. If we assume that the mass of MOF-199 in 100g MOF-199/CCF is (*x*) g, then the mass of CCF is (*100-x*) g. And the mass loading ratio of MOF-199 on CCF can be calculated by Eq. S(1) and Eq. S(2):

$$x \cdot 33.55\% + (100 - x) \cdot 2.70\% = 100 \cdot 15.54\%$$
 S(1)
 $W_{MOF-199} = x / 100 \cdot 100\%$ S(2)

where $W_{MOF-199}$ represents the mass loading ratio of MOF-199 on CCF. Combined with Eq. S(1) and Eq. S(2), it is calculated that the mass loading ratio of MOF-199 on CCF is around 41.62 wt%.

Table S1
BET specific surface area and average pore diameter of the three materials.

MOF-199		MOF-19)9/CCF	CCF	
BET specific surface area (m²/g)	Average pore diameter (nm)	BET specific surface area (m²/g)	Average pore diameter (nm)	BET specific surface area (m²/g)	Average pore diameter (nm)
645.26	2.19	264.83	2.53	2.31	12.3

Table S2

Adsorption thermodynamic model parameters of MOF-199/CCF adsorption of MB.

ΔH (KJ·mol ⁻¹)	$\Delta S (J \cdot K^{-1} \cdot mol^{-1})$	ΔG (KJ·mol ⁻¹)				
-40.09	-106.50	298K	308K	318K	328K	338K
		-8.35	-7.29	-6.22	-5.16	-4.09

Table S3

Pseudo-first-order kinetic and pseudo-second-order kinetic model parameters for the adsorption of MB by MOF-199/CCF.

q _e (mg/g) experimental	Pseudo-first-order model			Pseudo-second-order model		
	q _e (mg/g) theoretical	k ₁ (min ⁻¹)	R ²	q _e (mg/g) theoretical	k2×10 ⁻³ (g•mg ⁻ ¹ •min ⁻¹)	R ²
435.1	418.1	0.2397	0.922	454.5	1.35	0.998