Supplementary Information

Selection, Characterization, and Biosensing Applications of DNA

Aptamers Targeting Cyanotoxin BMAA

Xaimara Santiago-Maldonado¹, José A. Rodríguez-Martínez², Luis López¹, Lisandro

```
Cunci<sup>1</sup>, Marvin Bayro<sup>1,3</sup>, Eduardo Nicolau<sup>1,3*</sup>
```

¹Department of Chemistry, University of Puerto Rico, San Juan, PR 00925-2437, United

States

²Department of Biology, University of Puerto Rico, San Juan, PR 00925-2437, United

States

³Molecular Science Research Center, University of Puerto Rico, San Juan, 00931-3346,

United States

Corresponding Author*

Phone: 787-292-9820, fax: 787-522-2150; email: eduardo.nicolau@upr.edu

Table of Contents

- Figure S1. Chemical structure BMAA
- Figure S2. Chemical structure of the counter-targets
- Table S1. DNA oligos used for SELEX
- Table S2. Sequences of the DNA aptamers
- Table S3. Beads-SELEX scheme for selection of BMAA-specific aptamers
- Table S4. Identification of overrepresented motifs using AptaTRACE
- Table S5. Apparent K_d values of the initial screening
- Figure S3. Screening for binders using the SG fluorescence displacement assay.
- Figure S4. Secondary structure of the aptamers with the highest affinity
- Figure S5. Non-specific binding BMAA-conjugated fluorescence assay
- Figure S6. Amino proton region of ¹H NMR spectra
- Figure S7. Replicates SG fluorescence displacement assay
- Table S6. Results of the non-linear fit SG fluorescence displacement assay
- Figure S8. Replicates BMAA-conjugated fluorescence assay
- Table S7. Results of the non-linear fit BMAA-conjugated fluorescence assay
- Figure S9. Independent experiments for the electrochemical detection of BMAA
- Figure S10. Calibration curves of the EAB sensor
- Table S8. Determination of LOD and LOQ values for the EAB sensor
- Figure S11. Electrochemical detection of AEG, atenolol, and DAB

Figure S1. Chemical structures A) BMAA B) Biotinylated BMAA consisting of a biotin moiety with a PEG₄ spacer arm covalently attached to the primary amine of BMAA (shown in green).

Figure S2. Chemical structures of counter targets, including isomers A) aminoethylglycine (AEG) B) 2,4-diaminobutyric acid (DAB) and other low molecular-weight emerging contaminants C) Atenolol D) Mono-butyl phthalate.

 Table S1. DNA oligos used for SELEX

Name	Sequence (5'- 3')
	TGTACCGTCTGAGCGATTCGTAC (N ₃₄) AGCCAGTCA
Library	GTGTTAAGGAGTGC
Forward primer	TGTACCGTCTGAGCGATTCGTAC
Forward primer + biotin	/Biot/ GCA CTC CTT AAC ACT GAC TGG CT
Reverse primer	GCACTCCTTAACACTGACTGGCT
xGen full-length UDI-	GATCGGAAGAGCACACGTCTGAACTCCAGTCAC [i7]8 UMI
UMI adapter index i7	ATCTCGTATGCCGTCTTCTGCTTG
xGen full-length UDI-	AATGATACGGCGACCACCGAGATCTACAC [i5]8
UMI adapter index i5	ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Full-length	N ₃₄ Sequence (5'- 3')
BMAA_159	GGCTCGGCCCTGGGT <u>GAGGGG</u> CGCAGTGGGGTGT
BMAA_165	GGGCGTGTGTG <u>GGAGGG</u> GGCACTTCGTCGGGGTG
BMAA_172	<u>GGGGG</u> CCAGTGAATGAGTT <u>GGGGTG</u> GTAATGGGG
BMAA_96	AGA <u>GGGGG</u> TGGCGGGTGTCTGGAGT <u>GGAGGG</u> TGG
BMAA_38	<u>GGGGG</u> TTCACGCTC <u>GAGGGG</u> GCCACA <u>GGGGGGAG</u> T
BMAA 165 scrambled	AGTCGTTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	C
Truncated	Sequence (5'- 3')
BMAA 159 min	GGCTCGGCCCTGGGT <u>GAGGGG</u> CGCAGT <u>GGGGTG</u> TAGC
	CAG
BMAA 165 min	GGGCGTGTGTG <u>GGAGGG</u> GGCACTTCGTC <u>GGGGTG</u> AGC
	CAG
Biosensing	
BMAA_165_min	/5ThioMC6-
	D/GGGCGTGTGTGGGGGGGGGGGCACTTCGTCGGGGTG/3A
	mMO/-3'

 Table S2. Sequences of the DNA aptamers. Overrepresented motifs are underlined.

Round	Positive Selection	Time	Round	Negative Selection	Time	
1	IT	48 h		-	-	
2	IT	24 h		-	-	
3	IT	18 h	4	IS	1 h	
5	IT	12 h	6	IS	3 h	
7	IT	6 h	8	IS	6 h	
0	IT / CE 500 μM	3 h/1 h	10		3 h / 1.5 h	
5	BMAA	011/111			/ 1.5 h	
	IT / CE 500 μ M	1 h / 30 min	12	IT / 1 μ M IM	3 h /3 h	
	BMAA	1117 00 11111	12	AEG	511/511	
12	IT / CE 100 μM	30 min / 15	11	IT / 1 μ M IM L-	3 h / 3 h	
15	BMAA	min	14	DAB	5117511	
15		15 min / 5	16	IT / 1 μ M IMs	1 h / 1 h /	
15		min	10	(serial)	1 h	
17	IT / CE 1 μ M BMAA	5 min / 2 min		-	-	
18	IT / CE 100 nM BMAA	1 min / 1 min		-	-	

Table S3. Beads-SELEX scheme for selection of BMAA-specific aptamers (IT = immobilization target, IS = immobilization substrate, CE = competitive elution, CTs = counter targets, IM = isomers).

Selection	Motif	Sood	Seed P-	Seed	Motif
Method	Profile	Seeu	value	frequency	frequency
	GGGGG	TGGGGG	0.050	3.93%	8.29%
Beads-	GGGAG	GGGGAG	0.045	2.87%	4.44%
SELEX	GAGGGG	GAGGGG	0.031	2.69%	2.69%
	GGAGGG	GGAGGG	0.029	2.54%	2.54%

Table S4. Identification of overrepresented motifs using AptaTRACE

Table S5. Apparent K_d values of the initial screening were obtained using the SG fluorescence displacement assay. The K_d values were determined through non-linear regression analysis by fitting the data with one site-specific binding equation using GraphPad Prism 10.2.0. No binding refers to the absence of a concentration-dependent trend within the studied range of concentrations.

ID	K _d (95% Cl)	K _d (μM)
BMAA_159	1.02 – 8.66	3.03
BMAA_165	0.149 – 0.690	0.234
BMAA_172	5.23 – 9.56	6.50
BMAA_96	No binding*	-
BMAA_38	3.08 - 102	18.6

Figure S3. Screening for binders using the SG fluorescence displacement assay. Binding isotherms of A) BMAA_159 ($K_d = 3.03$) B) BMAA_165 ($K_d = 0.234$) C) BMAA_172 ($K_d = 6.50$) D) BMAA_38 ($K_d = 18.6$). BMAA_96 did not show a concentration-dependent trend within the studied range of concentrations. The K_d values were determined through non-linear regression analysis by fitting the data with one site-specific binding equation using GraphPad Prism 10.2.0. Control samples of E) BMAA_159 F) BMAA_165 G) BMAA_172 H) BMAA_38. Measurements were performed in triplicates and the error bars represent the calculated standard error.

Figure S4. Secondary structure of the aptamers with the highest affinity A) BMAA 159 B) BMAA_165 C) BMAA_159_min and D) BMAA_165_min. Structures were predicted using the Mfold software considering ambient temperature and ionic conditions of the selection buffer (100 mM NaCl and 2 mM MgCl₂).

Figure S5. Non-specific binding of truncated aptamers measured with the BMAAconjugated fluorescence assay. Normalized fluorescence response of the aptamers (1 μ M) with BMAA and without (control). Measurements were performed in triplicates and the error bars represent the calculated standard error.

Figure S6. Amino proton region of the ¹H NMR spectra recorded in 20 mM sodium phosphate buffer with 100 mM NaCl and 2 mM MgCl₂ at 700 MHz ¹H frequency of A) BMAA_159_min B) BMAA_165_min. Aptamer solutions (20 μ M) were incubated with increasing molar concentrations of BMAA. Chemical shift perturbations are highlighted, indicating a conformational change in the aptamer upon binding.

Figure S7. Independent experiments SG fluorescence displacement assay. Binding isotherms were obtained using GraphPad Prism 10.2.0 for A) BMAA_159 and B) BMAA_165. Measurements were performed in triplicates and the error bars represent the calculated standard error.

Table S6. Apparent K_d values were obtained using the SG fluorescence displacement assay. Each measurement represents an independent experiment. The K_d values were determined through non-linear regression analysis by fitting the data with one site-specific binding equation using GraphPad Prism 10.2.0.

Aptamer	K . (95% CI)	K _d (μΜ)	D ²	K _d (μΜ)	Standard
		Best fit	ĸ	Mean	Error
	0.93 - 4.38	2.06	0.94		
BMAA_159	0.78 – 6.50	2.30	0.90	2.2	0.1
	0.84 – 5.91	2.27	0.92	-	
	0.60 - 1.24	0.86	0.98		
BMAA_165	0.18 – 0.37	0.26	0.98	0.32	0.02
	0.20 – 0.51	0.32	0.97	-	

Figure S8. Independent experiments BMAA-conjugated fluorescence assay. Binding isotherms were obtained using GraphPad Prism 10.2.0 for A) BMAA_159 B) BMAA_165. Measurements were performed in triplicates and the error bars represent the calculated standard error.

Table S7. Apparent K_d values were obtained using the BMAA-conjugated fluorescence assay. Each measurement represents an independent experiment. The K_d values were determined through non-linear regression analysis by fitting the data with one site-specific binding equation using GraphPad Prism 10.2.0.

Aptamer	K. (05% CI)	K _d (μM)		K _d (μΜ)	Standar
		Best fit	n	Mean	d Error
	3.12 – 8.26	5.02	0.98		
BMAA_159_min	2.55 – 7.03	4.20	0.98	6	1
	4.53 – 17.72	8.54	0.97	_	
	0.56 – 0.75	0.65	0.99		
BMAA_165_min	0.52 – 0.66	0.58	0.99	0.63	0.02
	0.55 – 0.76	0.65	0.99	_	

Figure S9. Independent experiments for the electrochemical detection of the EAB sensor upon addition of varying concentrations of BMAA (0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 pM) performed in buffer solution (4 mM NaCl, 0.2 mM MgCl₂, and 0.8 mM Tris at pH 7.4). Changes in current measured using SWV A) Electrode 1 B) Electrode 2 C) Electrode 3. Analytical response using the absolute value of Z_R (Ω) obtained using EIS D) Electrode 1 E) Electrode 2 F) Electrode 3. Measurements were performed in triplicates.

Figure S10. Independent experiments of the EAB sensor. Calibration curves of the analytical response $|Z_R|$ (Ω) against BMAA concentration A) Electrode 1 (Y = 91x + 45, R= 0.999, n=3) B) Electrode 2 (Y = 92x + 38, R= 0.999, n=3) C) Electrode 3 (Y = 89x + 32, R= 0.999, n=3). Simple linear regression analysis was obtained using GraphPad Prism 10.2.0.

Table S8. Determination of LOD and LOQ values for the EAB sensor. Simple linear regression analysis was obtained using GraphPad Prism 10.2.0. LOD = $3\sigma/S$ and LOQ = $10\sigma/S$, where S is the slope of the curve and σ is the standard deviation. SE represents the calculated standard error.

			Mean			Mean		
Electrode	S	σ	LOD (pM)	LOD (pM)	SE	LOQ (pM)	LOQ (pM)	SE
1	91	1	1.11			1.38		
2	92	2	1.17	1.13	0.03	1.62	1.46	0.07
3	89	1	1.11	_		1.38	-	

Figure S11. Electrochemical detection of the EAB sensor upon addition of varying concentrations of analyte (0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 pM) performed in buffer solution (4 mM NaCl, 0.2 mM MgCl₂, and 0.8 mM Tris at pH 7.4). Analytical response using the absolute value of Z_R (Ω) obtained using EIS of analyte A) AEG B) Atenolol 2 C) DAB. Measurements were performed in triplicates.