Green synthesis of Polyimide by using Ethanol Solvothermal

Method for Aqueous Zinc Batteries

Ya Zhao^a, Chaoqiao Yang^a, Hexiang Zhong^a, Lin Li^b, Jiangliang Hu^b, Jiaxin Fan^{b,*}

^aCollege of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, Liaoning, China

^bSchool of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, Guizhou, China

*Corresponding author: fmf_fjx@lpssy.edu.cn

NTCDA U-PI-0 U-PI-30 U-PI-50 U-PI-70 U-PI-100 Fig. S1 Solubility of NTCDA, U-PIs in NMP Solvent over 25 days

Fig. S2 FTIR spectra

Fig. S4 TG curves

Fig. S5 BET curves

Fig. S6 Pore size distribution

Fig. S7 Pore size distribution

Fig. S8 SEM image: (a) U-PI-0; (b) U-PI-30; (c) U-PI-70; (d) ~(f) corresponding magnified SEM images

Fig. S9 EDS mapping of (a) U-PI-0, (b) U-PI-30

Fig. S10 Nyquist plots

Fig. S11 CV curves

Fig. S12 GCD curves in the voltage range of 0-1 V at 0.05C

Fig. S13 Cycling performances

Fig. S14 CV curves

Fig. S15 The reduction reactions of U-PI-100 during the initial discharge process

	N (%)	C (%)	H (%)	O (%)
Theoretical value	9.589	61.643	1.369	27.39
Tested value	9.594	63.048	2.665	24.182

Table S1 Organic Elemental Analysis of U-PI-100

Table S2 The comparison between previous studies and this work

	Dianhydride	diamine	Solvent	Capacity (mAh g ⁻¹)		Cycle performance	Ref.
	NTCDA	Urea	NMP	174.5(20 mA g ⁻¹)	(vs. Li/Li ⁺)	50 mA g ⁻¹ 60 cycles 153 mAh g ⁻¹ (50 mA g ⁻¹)	[1]
NTCDA	NTCDA	ТАРВА/	NMP /mesitylene /	99 //0 1 A a ⁻¹)	(vs. Na/Na⁺)	100 cycles 93.8 mAh g $^{-1}$	[2]
	NICDA	MWCNTs	iso-quinoline	56.4(0.1 A g)			
	NTCDA	TAPA/CNT	Dimethylimidazoli done/mesitylene/i so-quinoline	104.4(0.1 A g ⁻¹)	(vs. Li/Li*)	8000 cycles 100 mAh g ⁻¹	[3]
	NTCDA	EDA	NMP	112.0(50 mA g ⁻¹)	(vs. Mg/Mg ²⁺)	100 cycles 113 mAh g ⁻¹	[4]
	NTCDA	ТАРВ	NMP	70.6(25 mA g ⁻¹)	(vs. Li/Li⁺)	1.5 A g ⁻¹ 10000 cycles 40 mAh g ⁻¹ (1.5 A g ⁻¹)	[5]

NTCDA	2,5- Diamino- benzoquino ne	quinoline	180.0(43.3 mA g ⁻¹)	(vs. Li/Li*)	80 cycles 85 mAh g ⁻¹	[6]
NTCDA	EDA/G	NMP	142.0(100 mA g ⁻¹)	(vs. K/K+)	100 cycles 137 mAh g ⁻¹	[7]
PTCDA	Urea	DMF	107.0(0.05 A g ⁻¹)	(vs. Zn/Zn ²⁺)	100 cycles 26 mAh g ⁻¹	[8]
NTCDA	1,2- Diamino- anthraquino ne	NMP	192.9(0.05 A g ⁻¹)	(vs. Zn/Zn ²⁺)	50 cycles 133.5 mAh g ⁻¹	[9]
NTCDA	AQ-NH₂	Zinc acetate /imidazole	191.9(50 mA g ⁻¹)	(vs. Zn/Zn ²⁺)	100 cycles 167.2 mAh g ⁻¹	[10]
PTCDA	EDA	NMP	91.0(0.05 A g ⁻¹)	(vs. Zn/Zn ²⁺)	1500 cycles 53 mAh g ⁻¹ (1 A g ⁻¹)	[11]
NTCDA	Urea	ethanol	378.9(23.3 mA g ⁻¹)	(vs. Zn/Zn ²⁺)	200 cycles 40.7 mAh g ¹ (0.46 A g ¹)	This work

[1] C. Chen, X. Zhao, H.-B. Li, F. Gan, J. Zhang, J. Dong and Q. Zhang, *Electrochimica Acta*, 2017, 229, 387-395.

[2] L. Chen, Y. Li, X. Wang, J. Wu, Y. Ding, S.-B. Ren, L. Zhang, Z. Xu, B. Chen, D.-M. Han and Y.-p. Wu, *Chemical Engineering Journal*, 2023, 464, 142658.

[3] G. Wang, N. Chandrasekhar, B. P. Biswal, D. Becker, S. Paasch, E. Brunner, M. Addicoat, M. Yu, R. Berger and X. Feng, *Advanced Materials*, 2019, 31, 1901478.

[4] S. Cui, T. Li, D. Tao, D. Zhang, Y. Cao and F. Xu, *ACS Materials Letters*, 2024, 6, 1883-1889.

[5] S. Lei, Y. Dong, Y. Dou, X. Zhang, Q. Zhang and Y. Yang, *Materials Advances*, 2021, 2, 5785-5790.

[6] A. V. Mumyatov, A. F. Shestakov, N. N. Dremova, K. J. Stevenson and P. A. Troshin, *Energy Technology*, 2019, 7, 1801016.

[7] Y. Hu, H. Ding, Y. Bai, Z. Liu, S. Chen, Y. Wu, X. Yu, L. Fan and B. Lu, *ACS Appl Mater Interfaces*, 2019, 11, 42078-42085.

[8] H. Huang, K. Wu, R. Ma, J. Huang, X. Zhang, L. Li, Y. Liu and C. Xiong, *Advanced Powder Technology*, 2022, 33, 103878.

[9] J. Wang, H. Lv, L. Huang, J. Li, H. Xie, G. Wang and T. Gu, ACS Appl Mater

Interfaces, 2023, 15, 49447-49457.

[10] Q. Feng, Y. Cao, C. Guo, L. Chen, W. Sun and Y. Wang, ACS Applied Energy Materials, 2023, 6, 7899-7907.

[11] B. Jiang, T. Huang, P. Yang, X. Xi, Y. Su, R. Liu and D. Wu, *Journal of Colloid and Interface Science*, 2021, 598, 36-44.