Electronic Supporting Material

Efficient phosphate removal utilizing N, Zn-doped carbon dots as an innovative nanoadsorbent

Mina Alikhani^a, Ehsan Khoshkalam^{b,*}, Jalal Sadeghi^b, Laura Bulgariu^c, Hossein Eshghi^d

^a Department of Chemistry, Payame Noor University, Tehran, Iran

^b Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran

^c Department of Environmental Engineering and Management, Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania

^d Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad (FUM), Mashhad, Iran

* Corresponding author: Ehsan Khoshkalam, Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran Tel: +989104050217
Fax: +985138807147
E-mail: <u>e.khoshkalam@alumni.um.ac.ir</u> (E. Khoshkalam)

Table of contents

Table. S1. QY of Zn-NCDs according to quinine sulfate

Figure S1. Schematic of Zn-N-CDs synthesis

Figure S2. TEM image of Zn-N-CDs whereas inset shows the particle size distribution histogram

Figure S3. The mean particle size by dynamic light scattering (DLS) of Zn-N-CDs

1. Characterization

1.1. Quantum yield measurement

The quantum yield (QY) is calculated using a quinine sulfate standard with a QY of 0.54 in 0.1 M H₂SO₄.

$$\frac{I_x}{QY_x = QY_s.} \frac{I_x}{I_s} \frac{A_s}{A_x} \frac{\eta^2_x}{\eta^2_s}$$
(1)

Where 'QY' is the fluorescent quantum yield, 'I' is the integrated fluorescent emission intensity at excitation of 360 nm, 'A' is the optical density, ' η ' is the refraction coefficient of a specific solvent (for the distilled water η_x / $\eta_s = 1$), 'x' is for the synthesized Zn-N-CDs, and 's' is for the standard.

Table. S1 QY of Zn-NCDs according to quinine sulfate

Sample	integrated emission intensity at λ_{ex} = 360 nm	Absorption at 360 nm	QY (%)
Quinine sulfate	24297.51	0.052	54
Zn-N-CDs	17357.66	0.042	47.54

2. Figures

Fig. S1. Schematic of Zn-N-CDs synthesis

Fig. S2. TEM image of Zn-N-CDs whereas inset shows the particle size distribution histogram

Fig. S3. The mean particle size by dynamic light scattering (DLS) of Zn-N-CDs