Supplementary Section: Synergistic Effects of β-NaFeO₂ Ferrite Nanoparticles for Photocatalytic Degradation, Antibacterial, and Antioxidant Applications

Tahira Jabeen ^{1,*}, Muhammad Shahid Khan ^{1,*}, Sana Javaid ¹, Waqar Azeem ², Rabia Ayoub

¹, Martin Motola ^{3,*}

- 1. Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- 2. Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
- 3. Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University

Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia

*Corresponding Author:

- T. Jabeen: (
 <u>tahira.jabeen1999@gmail.com</u>; **2**+923016979528)
- M. S. Khan (<u>mshahid.khan@iub.edu.pk;</u> *****+923006421403)
- M. Motola (<u>martin.motola@uniba.sk;</u> +421 2 9014 9374)

Fig. S1. Elemental composition of the material β -NaFeO₂ by EDS technique, with iron (Fe) constituting 47% of the overall composition, oxygen (O) comprising 28%, and sodium (Na) accounting for 25%

Fig. S2. Thermogravimetric Analysis (TGA) with weight loss patterns across temperature ranges, reflecting volatile component removal and organic decomposition during calcination.

Fig. S3. Magnetic behavior analysis (M-H curve) shows superparamagnetic properties of β -NaFeO₂ nanoparticles with no coercivity (H_c) or remanence magnetization (Mr) and a saturation magnetization (M_s) of 27.11 emu/g at room temperature.

Fig. S4. Surface charge and colloidal stability of β -NaFeO₂ by zeta potential technique

Fig. S5. Effect of TEMPO scavenger on photocatalytic degradation of Methyl Red Dye

Fig. S6. Application of Langmuir-Hinshelwood model to analyze MR dye degradation kinetics, demonstrating strong correlation ($R^2 = 0.90$) and efficiency of β -NaFeO₂ nanoparticles ($k = 0.000613 \text{ min}^{-1}$)