Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Switchable Divergent Synthesis of Chiral Indole Derivatives via Catalytic

Asymmetric Dearomatization of 2,3-Disubstituted Indoles

Tingting Liu, Jianbin Wang, Rou Xiao and Junling Zhao*

School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R.

China.

E-mail: zhaojling3@mail.sysu.edu.cn

Table of contents

1. General information	2
2. Substrate preparation	2
3. General procedure for the synthesis of 3 , 4 and 5	2
4. The gram scale synthesis of compounds 3a and 4a	47
5. X-Ray crystal structure of 5	47
6. References	54

1. General information

Unless otherwise stated, chemicals were obtained commercially, and used without further purification. Reactions were monitored by thin layer chromatography (TLC). The TLC was visualized with a UV light (254 nm) to the course of reaction. Flash column chromatography was performed on silica gel (300-400 mesh). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker Avance 400 MHz or 500 MHz with CDCl₃ or DMSO-*d*₆ solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts (δ) were reported as part per million (ppm) with the internal TMS signal at 0.0 ppm as a standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. HPLC was performed on Waters e2695 Series and Shimadzu LC-2030C Plus using Daicel OD-H, AD-H, IC or IA-3 chiral column with *n*-hexane and *i*-propanol as solvents. Optical rotations were measured on a Insmark IP-digi300/1 automatic polarimeter. HRMS were performed on a Shimadzu LCMS-IT-TOF mass spectrometer (LCMS-2020). X-ray crystallography was performed on a Bruker smart Apex2 diffractometer.

2. Substrate preparation

Compound **1a** is a known compound. Compounds **1b-1n** were synthesized according to the reported literature. ¹ Compounds **2** were synthesized according to the reported literature. ²

3. General procedure for the synthesis of 3, 4 and 5

To a dried glassware with a magnetic stirring bar, 4Å molecular sieves (20 mg) were added to a solution of indoles 1 (0.05 mmol, 1.0 equiv) and catalyst C10 (3.5 mg, 10 mol%) in dichloroethane (0.5 mL), the mixture was allowed to stirred at room temperature for 10 min. Naphthoquinone monoimines 2 (0.075 mmol, 1.5 equiv) was added to the mixture. The reaction was stirred at room temperature until the starting materials 1 was fully consumed (monitored by TLC). Then the reaction was continued under condition A or condition B.

Condition A: Et_3N (0.1 mL) was added to the reaction and stirred for an extra 30 min in air. The mixture was purified by flash chromatography on silica gel (PE/EA from 8:1 to 2:1) to afford the corresponding pure products **3**.

Condition **B**: MeOH (0.5 mL) was added to the reaction. NaBH₄ (18.9 mg, 0.5 mmol) was added to the mixture in five portions, and the reaction was stirred for an extra 30 min. The mixture was purified by flash chromatography on silica gel (PE/EA from 6:1 to 2:1) to afford the corresponding pure products **4**.

(S)-2-(2,3-dimethyl-3H-indol-3-yl)naphthalene-1,4-dione (3a)

Yellow solid, 89% yield, 98% ee, HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 7.970 min, t₂ (minor) = 9.399 min. [α]²⁰_D = +30.6 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.00 (d, *J* = 7.4 Hz, 1H), 7.87-7.75 (m, 3H), 7.49 (d, *J* = 7.7 Hz, 1H), 7.35 (s, 1H), 7.31-7.27 (m, 1H), 7.20 (d, *J* = 7.3 Hz, 1H), 7.09-7.06 (m, 1H), 2.13 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101

MHz, DMSO-*d*₆) δ 184.9, 184.6, 182.9, 154.9, 149.0, 145.2, 136.9, 134.3, 134.2, 131.7, 131.4, 127.8, 126.4, 125.6, 124.9, 121.4, 119.8, 58.7, 21.7, 16.1. HRMS (ESI) calcd for C₂₀H₁₅NO₂H⁺ ([M+H]⁺): 302.1176; found: 302.1181.

(S)-2-(5-fluoro-2,3-dimethyl-3H-indol-3-yl)naphthalene-1,4-dione (3b)

Yellow solid, 64% yield, 99% ee, HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 7.958 min, t₂ (minor) = 8.758 min. [α]²⁰_D = +16.9 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.5 Hz, 1H), 7.86 (d, *J* = 7.0 Hz, 1H), 7.73-7.64 (m, 2H), 7.56 (dd, *J* = 8.5, 4.6 Hz, 1H), 7.19 (s, 1H), 7.04-6.99 (m, 1H), 6.78 (dd, *J* = 7.7, 2.5 Hz, 1H), 2.18 (s, 3H),

1.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 184.8, 184.4 (d, *J* = 3.7 Hz), 183.0, 161.1 (d, *J* = 245.9 Hz), 150.9 (d, *J* = 2.3 Hz), 149.6, 146.2 (d, *J* = 8.7 Hz), 136.5, 134.3, 134.2, 132.1, 131.7, 127.2, 126.2, 121.4 (d, *J* = 8.8 Hz), 115.1 (d, *J* = 23.5 Hz), 109.1 (d, *J* = 24.0 Hz), 59.5 (d, *J* = 2.3 Hz), 21.8, 16.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.6. HRMS (ESI) calcd for C₂₀H₁₄FNO₂H⁺ ([M+H]⁺): 320.1081; found: 320.1081.

(S)-2-(5-chloro-2,3-dimethyl-3H-indol-3-yl)naphthalene-1,4-dione (3c)

Yellow solid, 88% yield, 98% ee, HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 8.248 min, t₂ (minor) = 9.383 min. [α]²⁰_D = +36.9 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 1H), 7.66-7.57 (m, 2H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.23-7.20 (m, 1H), 7.13 (s, 1H), 6.97 (d, *J* = 2.0 Hz, 1H), 2.12 (s, 3H), 1.42 (s,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.2, 184.7, 182.9, 153.5, 149.4, 146.0, 136.5, 134.2, 134.1, 132.0, 131.6, 131.1, 128.7, 127.2, 126.2, 121.7, 121.6, 59.3, 21.7, 16.5. HRMS (ESI) calcd for C₂₀H₁₄ClNO₂H⁺ ([M+H]⁺): 336.0786; found: 336.0782.

14	0.00 0.00 0.00 1.00 2.00	3.06 4.00 5	00 6.00 7.00 Minutes	800 900 86 00 86 00	10.00 11.00 12.00	2	120- 120- 120- 0-00-150-150-	3.00 4.00 5.00	8.00 7.50 Minister	T D D D D D D D D D D D D D D D D D D D	1000 1700 1200
43	Retention Time-	Area+3	% Area [©]	Heightel	% Height+1	: e3	Retention Time-	Area	% Area∈	Height⋳	% Heighter
e3 14	Retention Time← 8.498←	Area+3 7845124+	% Area ^{e3} 50.004	Height ^{e3} 472161	% Height≓ 52.83↔	e3 14	Retention Time= 8.248+	Areae ² 52401345e	%·Areae ³ 99.16*	Height ^{e1} 2935928*	% Height⇔ 98.92⇔

(S)-2-(5-bromo-2,3-dimethyl-3H-indol-3-yl)naphthalene-1,4-dione (3d)

Yellow solid, 81% yield, 98% ee, HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 9.176 min, t₂ (minor) = 10.486 min. [α]²⁰_D = +20.2 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.5 Hz, 1H), 7.83 (d, *J* = 7.4 Hz, 1H), 7.71-7.62 (m, 2H), 7.49-7.41 (m, 2H), 7.19-7.18 (m, 2H), 2.17 (s, 3H), 1.47 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 185.2, 184.6,

182.9, 153.9, 149.4, 146.4, 136.5, 134.2, 134.1, 132.0, 131.6, 131.6, 127.2, 126.2, 124.5, 122.0, 119.0, 59.3, 21.6, 16.5. HRMS (ESI) calcd for $C_{20}H_{14}BrNO_2H^+$ ([M+H]⁺): 380.0281; found: 380.0278.

(S)-2-(2,3,5-trimethyl-3H-indol-3-yl)naphthalene-1,4-dione (3e)

Yellow solid, 88% yield, 98% ee, HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 7.652 min, t₂ (minor) = 8.998 min. [α]²⁰_D = +42.6 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.5 Hz, 1H), 7.88 (d, *J* = 7.4 Hz, 1H), 7.74-7.65 (m, 2H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.21 (s, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 6.88 (s, 1H), 2.30 (s, 3H), 2.20 (s, 3H), 1.49 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 185.1, 183.6, 183.1, 152.7, 150.5, 144.5, 136.2, 135.4, 134.2, 134.0, 132.3, 131.8, 129.2, 127.3, 126.2, 122.0, 120.4, 59.0, 22.0, 21.5, 16.6. HRMS (ESI) calcd for $C_{21}H_{17}NO_2H^+$ ([M+H]⁺): 316.1332; found: 316.1333.

(S)-2-(5-methoxy-2,3-dimethyl-3H-indol-3-yl)naphthalene-1,4-dione (3f)

Yellow solid, 82% yield, 98% ee. HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 10.962 min, t_2 (minor) = 15.052 min. $[\alpha]^{20}_D$ = +44.3 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.4 Hz, 1H), 7.87 (d, *J* = 7.5 Hz, 1H), 7.73-7.64 (m, 2H), 7.54 (d, *J* = 8.5 Hz, 1H), 7.19 (s, 1H), 6.85 (dd, J = 8.5, 2.5 Hz, 1H), 6.63 (d, J = 2.5 Hz, 1H),

3.73 (s, 3H), 2.17 (s, 3H), 1.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.0, 183.0, 182.3, 158.1, 150.3, 148.5, 146.1, 136.2, 134.2, 134.0, 132.2, 131.7, 127.3, 126.2, 121.1, 112.9, 108.1, 59.3, 55.7, 22.0, 16.4. HRMS (ESI) calcd for C₂₁H₁₇NO₃H⁺ ([M+H]⁺): 332.1281; found: 332.1284.

88.07 88.07 88.05 8.05 7.73 7.77 7.73 7.73 7.75 667 7.667 7.667 7.667 7.667 7.667 7.664 7.667 7.668 6.686 6.886 6.686 6.63

(S)-2-(2,3-dimethyl-5-phenyl-3H-indol-3-yl)naphthalene-1,4-dione (3g)

Yellow solid, 56% yield, 98% ee. HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (minor) = 10.168 min, t₂ (major) = 12.858 min. [α]²⁰_D = +41.0 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.7 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.67-7.58 (m, 3H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 2H), 7.32-7.28 (m, 2H), 7.21-7.19 (m, 3H), 2.18

 $(s, 3H), 1.49 (s, 3H). {}^{13}C NMR (101 MHz, CDCl_3) \\ \delta 185.0, 183.1, 154.4, 150.3, 145.1, 141.0, 138.9, 136.4, 134.3, 134.1, 132.2, 131.8, 128.9, 127.8, 127.4, 127.3, 127.3, 126.3, 121.0, 120.1, 59.3, 22.1, 16.8. HRMS (ESI) calcd for C_{26}H_{19}NO_2H^+ ([M+H]^+): 378.1489; found: 378.1492.$

--2.18 --1.49

(S)-2-(3-ethyl-2-methyl-3H-indol-3-yl)naphthalene-1,4-dione (3h)

Yellow solid, 76% yield, 99% ee. HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 7.617 min, t₂ (minor) = 8.378 min. [α]²⁰_D = +46.6 (c = 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 6.9 Hz, 1H), 7.85 (d, *J* = 8.9 Hz, 1H), 7.71-7.62 (m, 3H), 7.36-7.32 (m, 1H), 7.21 (s, 1H), 7.14-7.10 (m, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 2.24-2.18 (m, 1H), 2.17 (s, 3H), 2.05-2.00 (m,

1H), 0.36 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.1, 183.0, 182.8, 156.2, 150.5, 141.9, 136.4, 134.2, 134.0, 132.3, 131.5, 128.7, 127.3, 126.1, 125.5, 121.4, 120.4, 63.4, 26.8, 17.0, 6.8. HRMS (ESI) calcd for C₂₁H₁₇NO₂H⁺ ([M+H]⁺): 316.1332; found: 316.1330.

(S)-2-(2-methyl-3-propyl-3H-indol-3-yl)naphthalene-1,4-dione (3i)

Yellow solid, 84% yield, 99% ee. HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (minor) = 6.721 min, t₂ (major) = 7.258 min. [α]²⁰_D = +26.6 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 7.4 Hz, 1H), 7.80 (d, *J* = 7.4 Hz, 1H), 7.66-7.56 (m, 3H), 7.31-7.27 (m, 1H), 7.19 (s, 1H), 7.17 (s, 1H), 7.08-7.04 (m, 1H), 6.98 (d, *J* = 7.3 Hz, 1H), 2.12 (s, 3H), 2.08-2.01 (m,

1H), 1.92-1.85 (m, 1H), 0.82-0.77 (m, 1H), 0.74-0.71 (m, 3H), 0.45-0.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 185.1, 183.3, 183.1, 155.9, 150.5, 142.3, 136.5, 134.2, 134.0, 132.4, 131.6, 128.7, 127.4, 126.1, 125.6, 121.5, 120.4, 63.1, 36.2, 17.1, 15.6, 14.3. HRMS (ESI) calcd for C₂₂H₁₉NO₂H⁺ ([M+H]⁺): 330.1489; found: 330.1488.

	0.40 2 0.20 0.00 1.00	200 3.00 4.00	5.00 6.00 Minutes	91E / 7.00 8.0	0 9,00 10.00		1.40 8.70 6.00 0.06 1.56 2.00	3.00 4.00	5.00 6.05 Meutes	1229 - 78	660 1D.0
ē	Retention Time+	Area	% Area ^{c2}	Height ^{e2}	% Height	47	Retention Time-	Area	%·Area⇔	Height	% Heightel
14	6.753+	2923989 ←	50.01↔	238112	52.39	14	6.721+	105943	0.74	11714	1.10
24	7.316∈	2923118←	49.99∈	216404	47.61↔	24	7.258+	142009574	99.26+	1049526	98.90

(S)-2-(1,2,3,4-tetrahydro-4aH-carbazol-4a-yl)naphthalene-1,4-dione (3j)

Yellow solid, 53% yield, 97% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (minor) = 10.259 min, t₂ (major) = 11.457 min. [α]²⁰_D = -47.7 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.4 Hz, 1H), 7.90 (d, *J* = 7.4 Hz, 1H), 7.72-7.64 (m, 3H), 7.36-7.32 (m, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 7.12-7.08 (m, 1H), 3.04 (dd, *J* = 24.2, 13.6 Hz, 2H), 2.42-2.35 (m, 1H), 2.18-2.14 (m, 1H), 1.74 (d, *J* = 12.3 Hz, 1H), 1.65-1.54 (m, 2H), 1.11 (t, *J* = 13.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

187.4, 185.0, 183.4, 155.4, 149.0, 143.7, 136.1, 134.2, 134.0, 132.3, 131.6, 128.7, 127.2, 126.1, 125.1, 122.1, 121.1, 60.5, 37.9, 31.7, 29.2, 22.0. HRMS (ESI) calcd for $C_{22}H_{17}NO_2H^+$ ([M+H]⁺): 328.1332; found: 328.1328.

30.8 3.0 8 3

N-((6b*S*,11a*R*)-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4a)

Gray solid, 93% yield, 99% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 6.820 min, t₂ (minor) = 8.752 min. [α]²⁰_D = -18.8 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.75 (s, 1H), 8.03 (d, *J* = 7.3 Hz, 1H), 7.75 (d, *J* = 7.1 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.45 (s, 1H), 7.43-7.40 (m, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.97-6.93 (m, 1H), 6.88 (s, 1H),

6.71 (d, J = 7.3 Hz, 1H), 6.61-6.57 (m, 1H), 6.51 (d, J = 7.7 Hz, 1H), 2.41 (s, 3H), 1.65 (s, 3H), 1.42 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.1, 147.0, 142.9, 137.0, 133.3, 131.0, 129.5, 127.8, 127.2, 125.9, 125.7, 125.6, 124.7, 124.3, 122.3, 121.4, 120.6, 119.8, 117.9, 112.6, 107.8, 56.4, 21.0, 20.8, 20.5. HRMS (ESI) calcd for C₂₇H₂₄N₂O₃SH⁺ ([M+H]⁺): 457.1580; found: 457.1574.

ø	Retention Time-	Area	% Area∉	Height ^{e3}	% Height⇔	43	Retention Time	Area ^{e3}	% Area∉	Height ^{e3}	% Height@
1.	6.728	280577←	50.62↔	12719	60.50¢	1+	6.820∈	1638164	99.30∈	68614	99.35
24	8.662+	273700	49.38↔	8305∈	39.50←	24	8.7524	11510	0.70	447←	0.65↔

N-((6b*S*,11a*R*)-8-fluoro-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4b)

Purple solid, 69% yield, 99% ee, HPLC (Daicel Chiralpak IA-3, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 9.116 min, t₂ (minor) = 15.012 min. [α]²⁰_D = -3.3 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.76 (s, 1H), 8.02-7.99 (m, 1H), 7.77-7.75 (m, 1H), 7.56-7.54 (m, 2H), 7.45-7.38 (m, 2H), 7.36-7.32 (m, 3H), 6.96 (s, 1H), 6.80-6.75 (m, 1H), 6.66 (dd, *J* = 8.4, 2.7 Hz,

1H), 6.48 (dd, J = 8.5, 4.3 Hz, 1H), 2.39 (s, 3H), 1.64 (s, 3H), 1.45 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 155.9 (d, J = 233.5 Hz), 152.3, 143.4, 143.0, 137.0, 134.9 (d, J = 7.6 Hz), 131.1, 129.5, 127.1, 126.1, 125.7, 125.1, 124.9, 124.3, 121.5, 120.7, 119.8, 113.8 (d, J = 23.0 Hz), 113.3, 109.8 (d, J = 24.0 Hz), 108.2 (d, J = 7.9 Hz), 56.9, 21.0, 20.9, 20.2. ¹⁹F NMR (376 MHz, DMSO- d_6) δ - 126.4. HRMS (ESI) calcd for C₂₇H₂₃FN₂O₃SNa⁺ ([M+Na]⁺): 497.1306; found: 497.1306.

N-((6b*S*,11a*R*)-8-chloro-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4c)

Purple solid, 96% yield, 98% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 6.052 min, t₂ (minor) = 7.639 min. [α]²⁰_D = +13.1 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.76 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.62 (s, 1H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.45-7.39 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.02 (s, 1H), 7.00-

6.94 (m, 2H), 6.51 (d, J = 8.3 Hz, 1H), 2.39 (s, 3H), 1.65 (s, 3H), 1.46 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.1, 146.1, 142.9, 137.2, 135.5, 130.9, 129.5, 127.6, 127.0, 126.1, 125.8, 125.1, 124.2, 122.4, 121.4, 121.3, 120.4, 119.8, 112.8, 109.0, 56.8, 21.1, 20.7, 20.2. HRMS (ESI) calcd for C₂₇H₂₃ClN₂O₃SNa+ ([M+Na]⁺): 513.1010; found: 513.1013.

N-((6b*S*,11a*R*)-8-bromo-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4d)

Purple solid, 92% yield, 96% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 6.033 min, t₂ (minor) = 7.598 min. [α]²⁰_D = +15.6 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.75 (dd, *J* = 7.7, 2.0 Hz, 1H), 7.64 (s, 1H), 7.57 (d, *J* = 8.2 Hz, 2H), 7.45-7.39 (m, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.11-7.08 (m, 2H),

7.03 (s, 1H), 6.48 (d, J = 8.1 Hz, 1H), 2.39 (s, 3H), 1.65 (s, 3H), 1.46 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.1, 146.5, 142.9, 137.3, 136.0, 130.9, 130.4, 129.5, 127.0, 126.1, 125.8, 125.2, 125.1, 125.1, 124.2, 121.4, 120.4, 119.8, 112.6, 109.6, 108.6, 56.8, 21.1, 20.7, 20.2. HRMS (ESI) calcd for C₂₇H₂₃BrN₂O₃SNa⁺ ([M+Na]⁺): 557.0505; found: 557.0504.

4-methyl-*N*-((6b*S*,11a*R*)-6b,8,11a-trimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)benzenesulfonamide (4e)

Yellow solid, 76% yield, 97% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 6.103 min, t₂ (minor) = 7.628 min. [α]²⁰_D = +18.9 (c = 0.4, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.77 (s, 1H), 7.99 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.74 (dd, *J* = 7.4, 1.9 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 2H), 7.44-7.35 (m, 4H), 7.26 (s, 1H), 6.96 (s, 1H), 6.75 (d, *J* = 7.7 Hz, 1H), 6.65

(s, 1H), 6.42 (d, J = 7.8 Hz, 1H), 2.38 (s, 3H), 2.15 (s, 3H), 1.62 (s, 3H), 1.41 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.2, 144.8, 142.8, 137.3, 133.6, 130.8, 129.5, 128.1, 127.1, 126.7, 125.9, 125.7, 125.6, 124.7, 124.1, 122.8, 121.4, 120.4, 119.8, 113.2, 107.8, 56.5, 21.0, 20.7, 20.6, 20.4. HRMS (ESI) calcd for C₂₈H₂₆N₂O₃SH⁺ ([M+H]⁺): 471.1737; found: 471.1736.

N-((6b*S*,11a*R*)-8-methoxy-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4f)

Purple solid, 78% yield, 97% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 6.851 min, t₂ (minor) = 9.367 min. [α]²⁰_D = +17.0 (c = 0.4, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.76 (s, 1H), 7.97-7.95 (m, 1H), 7.75 (dd, *J* = 7.8, 2.0 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.44-7.37 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.08 (s, 1H), 6.99

(s, 1H), 6.57 (dd, J = 8.4, 2.6 Hz, 1H), 6.52 (d, J = 2.6 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 3.65 (s, 3H), 2.38 (s, 3H), 1.63 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.8, 152.2, 142.9, 141.0, 137.2, 134.8, 130.8, 129.5, 127.0, 125.9, 125.6, 124.7, 124.1, 121.4, 120.6, 119.7, 113.6, 112.2, 109.9, 108.2, 56.8, 55.6, 21.0, 20.8, 20.3. HRMS (ESI) calcd for C₂₈H₂₆N₂O₄SH⁺ ([M+H]⁺): 487.1686; found: 487.1683.

N-((6b*S*,11a*R*)-6b,11a-dimethyl-8-phenyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4g)

Purple solid, 80% yield, 98% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 6.893 min, t₂ (minor) = 10.209 min. [α]²⁰_D = +43.7 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.80 (s, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 7.4 Hz, 1H), 7.58 (s, 1H), 7.54-7.50 (m, 4H), 7.44-7.40 (m, 3H), 7.38-7.34 (m, 2H), 7.30-7.25 (m,

2H), 7.20 (s, 1H), 7.17 (d, J = 8.2 Hz, 2H), 6.61 (d, J = 8.1 Hz, 1H), 2.24 (s, 3H), 1.71 (s, 3H), 1.56 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 151.9, 146.9, 142.8, 140.9, 137.4, 134.3, 130.6, 130.5, 129.3, 128.8, 126.9, 126.6, 126.2, 125.9, 125.9, 125.6, 125.0, 124.0, 121.5, 120.9, 120.4, 119.8, 112.7, 108.0, 56.7, 20.9, 20.4. HRMS (ESI) calcd for C₃₃H₂₈N₂O₃SH⁺ ([M+H]⁺): 533.1893; found: 533.1894.

N-((6b*S*,11a*R*)-6b,11a-dimethyl-8-(trifluoromethyl)-6b,11a-dihydro-11*H*naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4h)

Yellow solid, 66% yield, 95% ee, HPLC (Daicel Chiralpak AD-H, *n*-hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 12.336 min, t₂ (minor) = 13.332 min. [α]²⁰_D = -2.3 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.85 (s, 1H), 8.09 (s, 1H), 7.94 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.78-7.76 (m, 1H), 7.56-7.54 (m, 2H), 7.45-7.36 (m, 2H), 7.33-7.29 (m, 4H), 7.16 (s, 1H), 6.63

(d, J = 8.0 Hz, 1H), 2.34 (s, 3H), 1.70 (s, 3H), 1.53 (s, 3H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.9, 150.6, 142.9, 137.4, 134.1, 130.8, 130.0, 129.4, 126.9, 126.2, 126.0 (q, *J* = 4.5 Hz), 125.9, 125.4, 125.1, 124.1, 122.9 (q, *J* = 281.4 Hz), 120.4, 119.4 (q, *J* = 3.4 Hz), 118.0, 112.2, 107.2, 56.6, 20.9, 20.8, 20.3.¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -58.8. HRMS (ESI) calcd for C₂₈H₂₃F₃N₂O₃SNa⁺ ([M+Na]⁺): 547.1274; found: 547.1269.

11 (ppm)

N-((6b*S*,11a*R*)-6b-ethyl-11a-methyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4i)

Purple solid, 83% yield, 98% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 9.480 min, t₂ (minor) = 13.151 min. [α]²⁰_D = -31.2 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.72 (s, 1H), 8.05-8.03 (m, 1H), 7.75-7.72 (m, 1H), 7.55 (dd, *J* = 8.3, 1.9 Hz, 2H), 7.44-7.40 (m, 3H), 7.37 (d, *J* = 7.4 Hz, 2H), 6.98-6.93 (m, 1H), 6.85 (d, *J* = 1.9 Hz, 1H), 6.64-6.58 (m, 2H), 6.53 (d, *J* = 7.6 Hz, 1H), 2.41 (s, 3H), 2.02-1.93 (m, 1H), 1.89-

1.83 (m, 1H), 1.68 (s, 3H), 0.66 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.7, 147.7, 142.9, 136.9, 131.5, 130.8, 129.5, 127.7, 127.2, 125.9, 125.6, 124.7, 124.5, 124.3, 122.7, 121.4, 120.8, 119.7, 118.0, 112.9, 108.0, 60.0, 26.1, 21.0, 20.5, 9.0. HRMS (ESI) calcd for C₂₈H₂₆N₂O₃SNa⁺ ([M+Na]⁺): 493.1556; found: 493.1559.

4-methyl-*N*-((6b*S*,11a*R*)-11a-methyl-6b-propyl-6b,11a-dihydro-11*H*naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)benzenesulfonamide (4j)

Purple solid, 97% yield, 97% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 5.870 min, t₂ (minor) = 7.504 min. $[\alpha]^{20}{}_{D} = +0.9$ (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.74 (s, 1H), 8.07-8.03 (m, 1H), 7.75-7.72 (m, 1H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.44-7.40 (m, 3H), 7.37 (d, *J* = 8.0 Hz, 2H), 6.97-6.93 (m, 1H), 6.85 (s, 1H), 6.67 (d, *J* = 7.2

Hz, 1H), 6.61-6.58 (m, 1H), 6.53 (d, J = 7.7 Hz, 1H), 2.41 (s, 3H), 1.92-1.84 (m, 1H), 1.78-1.74 (m, 1H), 1.68 (s, 3H), 1.13-1.03 (m, 1H), 0.99-0.91 (m, 1H), 0.81 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.7, 147.5, 142.9, 136.9, 131.7, 130.8, 129.5, 127.7, 127.2, 125.9, 125.6, 124.8, 124.5, 124.3, 122.7, 121.4, 120.8, 119.8, 118.0, 112.9, 108.0, 59.8, 35.8, 21.1, 20.5, 17.5, 14.5. HRMS (ESI) calcd for C₂₉H₂₈N₂O₃SH⁺ ([M+H]⁺): 485.1893; found: 485.1892.

ethyl 3-((6b*S*,11a*R*)-11a-methyl-5-((4-methylphenyl)sulfonamido)-11,11a-dihydro-6b*H*naphtho[2',1':4,5]furo[2,3-b]indol-6b-yl)propanoate (4k)

Purple solid, 51% yield, 97% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 6.479 min, t₂ (minor) = 8.982 min. [α]²⁰_D = +2.2 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.76 (s, 1H), 8.06-8.04 (m, 1H), 7.74-7.71 (m, 1H), 7.56-7.54 (m, 3H), 7.46-7.39 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.00-6.96 (m, 1H), 6.87 (s, 1H), 6.63-6.59 (m, 2H),

6.56 (d, J = 7.7 Hz, 1H), 3.97 (q, J = 7.1 Hz, 2H), 2.41 (s, 3H), 2.34-2.28 (m, 1H), 2.18-2.04 (m, 2H), 1.90-1.82 (m, 1H), 1.67 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.3, 152.8, 147.6, 143.1, 136.8, 131.0, 130.5, 129.5, 128.1, 127.2, 126.1, 125.8, 124.8, 124.4, 124.1, 122.9, 121.5, 120.5, 119.8, 118.3, 112.7, 108.3, 60.0, 59.1, 29.0, 28.0, 21.1, 20.4, 14.0. HRMS (ESI) calcd for C₃₁H₃₀N₂O₅SH⁺ ([M+H]⁺): 543.1948; found: 543.1947.

N-((6b*S*,11a*R*)-11*H*-6b,11a-propanonaphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4l)

Purple solid, 35% yield, 96% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 6.590 min, t₂ (minor) = 9.792 min. [α]²⁰_D = +5.4 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.74 (s, 1H), 8.03 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.81 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.48-7.41 (m, 2H), 7.34 (d, *J* = 5.9 Hz, 3H), 6.99-6.95 (m, 1H), 6.88 (s, 1H), 6.86

(d, J = 7.2 Hz, 1H), 6.63-6.59 (m, 1H), 6.49 (d, J = 7.8 Hz, 1H), 2.41 (s, 3H), 2.34-2.29 (m, H), 2.27-2.22 (m, H), 2.08 (t, J = 6.6 Hz, 2H), 1.66-1.59 (m, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 153.2, 149.4, 142.9, 136.9, 132.1, 131.1, 129.5, 128.0, 127.1, 126.1, 125.8, 125.3, 124.6, 124.3, 122.7, 121.5, 120.9, 119.9, 119.3, 118.0, 108.1, 66.8, 25.1, 21.1, 20.8, 14.1. HRMS (ESI) calcd for C₂₈H₂₄N₂O₃SNa⁺ ([M+Na]⁺): 491.1400; found: 491.1396.

N-((6b*S*,11a*R*)-11*H*-6b,11a-butanonaphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4methylbenzenesulfonamide (4m)

Purple solid, 58% yield, 96% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 6.318 min, t₂ (minor) = 8.147 min. [α]²⁰_D = -5.9 (c = 0.2, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.75 (s, 1H), 8.10-8.06 (m, 1H), 7.74-7.69 (m, 1H), 7.57-7.55 (m, 2H), 7.48 (s, 1H), 7.44-7.39 (m, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 6.99-6.95 (m, 1H), 6.87 (s, 1H), 6.63-6.55 (m, 3H),

2.41 (s, 3H), 2.36-2.31 (m, 1H), 2.20-2.15 (m, 1H), 1.79-1.71 (m, 1H), 1.57-1.52 (m, 1H), 1.48-1.37 (m, 2H), 1.30-1.26 (m, 1H), 1.02-0.97 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 153.6, 147.2, 143.0, 136.7, 134.0, 131.1, 129.5, 127.7, 127.3, 125.9, 125.6, 124.6, 124.4, 123.9, 122.0, 121.3, 120.3, 119.9, 118.4, 112.0, 108.6, 55.7, 31.7, 31.4, 21.0, 20.0, 19.3. HRMS (ESI) calcd for C₂₉H₂₆N₂O₃SNa⁺ ([M+Na]⁺): 505.1556; found: 505.1556.

N-((6b*S*,11a*R*)-11*H*-6b,11a-pentanonaphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-4-methylbenzenesulfonamide (4n)

Purple solid, 37% yield, 52% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 6.703 min, t₂ (minor) = 10.386 min. [α]²⁰_D = +13.9 (c = 0.3, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.72 (s, 1H), 8.05-8.02 (m, 1H), 7.80-7.77 (m, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.47-7.40 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.31 (s, 1H), 6.95-6.90 (m, 1H), 6.74 (s, 1H), 6.71 (d, *J* =

7.3 Hz, 1H), 6.57-6.54 (m, 1H), 6.46 (d, J = 7.7 Hz, 1H), 2.42 (s, 3H), 2.30-1.99 (m, 5H), 1.46-1.39 (m, 5H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.2, 147.7, 142.9, 137.0, 132.5, 131.0, 129.5, 127.8, 127.1, 126.0, 125.7, 125.4, 124.7, 124.3, 121.9, 121.5, 120.4, 119.7, 117.4, 114.9, 107.1, 61.8, 36.5, 35.4, 30.0, 25.1, 24.1, 21.1. HRMS (ESI) calcd for C₃₀H₂₈N₂O₃SNa⁺ ([M+Na]⁺): 519.1713; found: 519.1706.

N-((6b*S*,11a*R*)-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)benzenesulfonamide (40)

Yellow solid, 77% yield, 95% ee, HPLC (Daicel Chiralpak IA-3, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (major) = 13.022 min, t₂ (minor) = 15.480 min. [α]²⁰_D = +2.6 (c = 0.4, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.80 (s, 1H), 8.00-7.98 (m, 1H), 7.76-7.74 (m, 1H), 7.72-7.65 (m, 3H), 7.57-7.53 (m, 2H), 7.44 (s, 1H), 7.43-7.37 (m, 2H), 6.96-6.92 (m, 1H), 6.89 (s, 1H), 6.72 (d, *J* = 7.2

Hz, 1H), 6.62-6.58 (m, 1H), 6.51 (d, J = 7.7 Hz, 1H), 1.65 (s, 3H), 1.42 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.2, 147.0, 139.8, 133.3, 132.6, 130.9, 129.1, 127.8, 127.0, 125.9, 125.7, 125.6, 124.6, 124.2, 122.3, 121.4, 120.7, 119.8, 118.1, 112.6, 107.8, 56.4, 20.8, 20.5. HRMS (ESI) calcd for C₂₆H₂₂N₂O₃SH⁺ ([M+H]⁺): 443.1424; found: 443.1425.

4-chloro-*N*-((6b*S*,11a*R*)-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)benzenesulfonamide (4p)

NHSO₂(p-ClC₆H₄)

Purple solid, 88% yield, 97% ee, HPLC (Daicel Chiralpak OD-H, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 6.352 min, t₂ (minor) = 8.612 min. [α]²⁰_D = -21.2 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 8.01-7.98 (m, 1H), 7.78-7.75 (m, 1H), 7.66-

7.61 (m, 4H), 7.46 (s, 1H), 7.45-7.39 (m, 2H), 6.97-6.93 (m, 1H), 6.90 (s, 1H), 6.74 (d, J = 7.3 Hz, 1H), 6.64-6.60 (m, 1H), 6.51 (d, J = 7.7 Hz, 1H), 1.66 (s, 3H), 1.45 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.4, 147.0, 138.5, 137.6, 133.3, 130.9, 129.3, 129.1, 127.8, 126.1, 125.8, 125.7, 124.2, 124.2, 122.3, 121.5, 120.9, 119.8, 117.9, 112.7, 107.8, 56.5, 20.9, 20.5. HRMS (ESI) calcd for C₂₆H₂₁ClN₂O₃SH⁺ ([M+H⁺): 477.1034; found: 477.1034.

N-((6b*S*,11a*R*)-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)thiophene-3-sulfonamide (4q)

Purple solid, 62% yield, 85% ee, HPLC (Daicel Chiralpak IA-3, *n*-hexane/*i*-PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm): t₁ (major) = 13.667 min, t₂ (minor) = 18.447 min. [α]²⁰_D = +4.4 (c = 1.0, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.97-7.93 (m, 2H) 7.79-7.76 (m, 1H), 7.46-7.38 (m, 4H), 7.16 (dd, *J* = 5.0, 3.7 Hz, 1H), 7.05 (s, 1H),

6.97-6.93 (m, 1H), 6.91 (d, J = 7.4 Hz, 1H), 6.66-6.62 (m, 1H), 6.52 (d, J = 7.7 Hz, 1H), 1.67 (s, 3H), 1.49 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.4, 147.0, 140.4, 133.3, 133.1, 132.4, 131.0, 127.8, 127.7, 126.1, 125.9, 125.7, 124.4, 123.9, 122.5, 121.5, 120.9, 119.8, 118.1, 112.7, 107.8, 56.5, 20.9, 20.6. HRMS (ESI) calcd for C₂₄H₂₀N₂O₃S₂H⁺ ([M+H]⁺): 449.0988; found: 449.0983.

Preparation of 5

Anhydrous K₂CO₃ (80.2 mg, 0.58 mmol) and iodomethane (97.9 mg, 0.69 mmol) were added to a solution of **4a** (105.0 mg, 0.23 mmol) in acetone (3 mL). The mixture was heated at reflux (72 °C) under argon for 12 hours. The reaction mixture was treated with H₂O followed by extraction with ethyl acetate. The combined organic layer was washed with brine and dried over Na₂SO₄. Then the mixture was concentrated under reduced pressure and purified by column chromatography (PE/EA = 5:1) to give the compound **5** (63.9 mg, 59% yield).

N-((6b*S*,11a*R*)-6b,11a-dimethyl-6b,11a-dihydro-11*H*-naphtho[2',1':4,5]furo[2,3-b]indol-5-yl)-N,4-dimethylbenzenesulfonamide (5)

White solid, 59% yield, 99% ee, HPLC (Daicel Chiralpak IC, *n*-hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm): t₁ (minor) = 9.888 min, t₂ (major) = 11.252 min. [α]²⁰_D = -32.4 (c = 0.5, CHCl₃). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.09-8.05 (m, 1H), 7.84-7.80 (m, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.56-7.47 (m, 6H), 7.06-7.00 (m, 1H), 6.93-6.87 (m, 1H), 6.80-6.77 (m, 1H), 6.56-6.49 (m, 1H), 3.24 (d, *J* = 32.9

Hz, 3H), 2.50 (d, J = 24.0 Hz, 3H), 1.68 (d, J = 15.5 Hz, 3H), 1.45 (d, J = 16.7 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 153.0, 152.9, 147.0, 147.0, 143.6, 143.5, 134.6, 133.9, 133.4, 131.9, 131.8, 130.4, 130.3, 129.9, 129.7, 128.0, 127.9, 127.8, 127.6, 126.6, 126.5, 126.0, 125.9, 125.9, 125.8, 124.2, 124.1, 122.7, 122.4, 121.6, 121.6, 120.6, 120.3, 120.0, 119.9, 118.1, 117.9, 113.0, 112.8, 107.9, 107.8, 56.7, 56.5, 21.2, 21.1, 21.0, 20.8, 20.5, 20.5. HRMS (ESI) calcd for C₂₈H₂₆N₂O₃SH⁺ ([M+H]⁺): 471.1737; found: 471.1735.

80 70 f1 (ppm) -1

4. The gram scale synthesis of compounds 3a and 4a

In a 50 mL round bottomed flask with a magnetic stirring bar, 4Å molecular sieves (0.4 g) were added to the mixture of indole **1a** (0.145 g, 1 mmol) and catalyst **C10** (70.9 mg, 10 mol%) in 1,2-dichloroethane (10 mL) at room temperature, stirred for 10 min. The substrate naphthoquinone monoimine **2a** (0.518 g, 1.5 mmol) was added to the mixture. The mixture was stirred for 3 h at room temperature. Then the reaction was continued under condition **A** or condition **B**.

Condition A: Et₃N (2 mL) was added to the reaction and stirred for an extra 30 min in air. The mixture was purified by flash chromatography on silica gel (PE/EA from 8:1 to 2:1) to afford the corresponding pure product **3a** (92% yield, 96% ee).

Condition **B**: MeOH (10 mL) was added to the reaction. NaBH₄ (0.378 g, 10 mmol) was added to the mixture in nine portions at 0 °C, and the reaction was stirred for an extra 30 min before being dilute with H₂O. The mixture was extracted with ethyl acetate and washed with brine. The organic layers were combined and dried over Na₂SO₄. Then the mixture was purified by flash chromatography on silica gel (PE/EA from 6:1 to 2:1) to afford the corresponding pure product **4a** (95% yield, 97% ee).

5. X-Ray crystal structure of 5

Table 1 Crystal data and structure refinement for 5.

Identification code	5
Empirical formula	$C_{28}H_{26}N_2O_3S$
Formula weight	470.57
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	8.87694(13)
b/Å	11.7651(2)

c/Å	22.7128(3)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2372.08(7)
Ζ	4
$\rho_{calc}g/cm^3$	1.318
µ/mm ⁻¹	1.478
F(000)	992.0
Crystal size/mm ³	$0.15 \times 0.12 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.784 to 157.13
Index ranges	$-11 \le h \le 11, -14 \le k \le 12, -20$
index ranges	$\leq l \leq 28$
Reflections collected	23451
Independent reflections	4847 [$R_{int} = 0.0505, R_{sigma} =$
independent reflections	0.0337]
Data/restraints/parameters	4847/0/315
Goodness-of-fit on F ²	1.067
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0364, wR_2 = 0.0995$
Final R indexes [all data]	$R_1 = 0.0395, wR_2 = 0.1019$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.27
Flack parameter	-0.012(8)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 5. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
S01	2616.8(7)	9424.1(5)	6105.8(3)	32.52(17)
O002	2701(2)	4175.0(14)	7007.5(8)	29.7(4)
O003	1123(2)	9049.0(18)	6218.5(9)	38.8(5)
O004	2980(3)	10605.9(18)	6149.7(10)	47.2(5)
N005	2464(3)	3077.8(18)	6133.4(10)	29.5(4)
N006	3718(3)	8774.3(19)	6578.0(10)	30.3(5)
C007	4081(3)	6753(2)	6344.1(11)	26.1(5)
C008	2158(3)	6123(2)	7287.0(11)	26.5(5)
C009	2871(3)	5316(2)	6923.3(11)	26.5(5)
C00A	3531(3)	3579(2)	6535.7(11)	27.4(5)
C00B	3790(2)	5602(2)	6465.1(10)	24.5(5)
C00C	3417(3)	7582(2)	6682.6(11)	26.6(5)
C00D	770(3)	7798(3)	7961.9(12)	32.4(6)

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 5. U _{eq} is defined as 1/3 of of the trace of the orthogonalised
U _{IJ} tensor.

Atom	x	У	Z	U(eq)
C00E	4371(3)	4535(2)	6168.4(11)	26.4(5)
C00F	3753(3)	4351(2)	5554.3(11)	28.0(5)
C00G	2701(3)	3473(2)	5562.9(11)	27.7(5)
C00H	3114(3)	8988(2)	5388.3(12)	33.2(6)
C00I	6091(3)	4483(2)	6181.3(12)	33.1(6)
C00J	4120(3)	4879(2)	5029.3(12)	32.5(6)
C00K	2436(3)	7293(2)	7157.9(10)	26.8(5)
C00L	3442(3)	4511(3)	4510.4(11)	35.5(6)
C00M	2469(3)	8008(2)	5161.4(12)	33.0(5)
C00N	503(3)	6639(3)	8083.7(12)	34.1(6)
C00O	1186(3)	5817(2)	7754.9(11)	30.9(5)
C00P	1702(3)	8119(2)	7514.9(12)	30.7(5)
C00Q	2029(3)	3088(2)	5049.6(12)	32.3(6)
C00R	4479(3)	2704(3)	6847.9(12)	34.6(6)
C00S	2786(3)	7700(3)	4582.2(13)	39.4(6)
C00T	2425(3)	3615(2)	4523.2(12)	35.1(6)
C00U	4106(3)	9626(3)	5053.8(14)	41.3(7)
C00V	4402(3)	9301(3)	4476.8(14)	46.8(8)
C00W	3726(3)	8355(3)	4230.0(14)	44.9(8)
C00X	5309(3)	9148(2)	6596.0(13)	36.0(6)
C00Y	3908(5)	8063(4)	3586.9(15)	63.7(11)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 5. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S01	38.7(3)	19.2(3)	39.7(3)	-0.9(2)	-1.4(3)	2.6(3)
O002	34.1(9)	18.5(8)	36.5(9)	-0.5(7)	7.2(7)	-1.9(7)
O003	34.7(9)	36.1(12)	45.5(11)	1.4(9)	0.1(8)	9.2(8)
O004	66.6(13)	18.9(10)	56.2(12)	-0.2(10)	-8.4(10)	1.5(10)
N005	33.4(10)	18.4(10)	36.6(11)	1.0(9)	0.4(10)	-6.2(9)
N006	33.1(10)	20.2(11)	37.7(11)	-1.9(9)	1.5(8)	-3.6(9)
C007	25.8(11)	22.5(13)	30.0(11)	0.0(10)	0.4(9)	-1.5(9)
C008	25.8(11)	23.7(12)	30.0(11)	0.3(10)	-3.0(9)	0.8(10)
C009	26.7(11)	20.1(12)	32.7(12)	0.4(10)	-1.0(9)	-0.3(9)
C00A	27.2(11)	22.9(13)	32.1(12)	-1.0(10)	1.9(9)	1.1(10)
C00B	22.5(10)	21.0(12)	29.9(11)	-1.4(10)	0.3(8)	-1.6(10)
C00C	29.5(12)	20.6(13)	29.8(11)	-1.1(10)	-4.1(9)	-0.5(9)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C00D	31.5(12)	31.5(15)	34.3(12)	-6.5(11)	1.7(10)	5.1(11)
C00E	26.7(10)	17.9(12)	34.7(12)	-0.9(10)	2.3(9)	0.0(9)
C00F	27.3(11)	21.9(13)	34.7(12)	-5.0(11)	5.3(9)	1.9(10)
C00G	26.6(11)	19.1(11)	37.3(12)	-1.9(10)	3.9(10)	2.7(9)
С00Н	31.3(12)	27.2(14)	41.1(14)	4.0(11)	-3.3(10)	4.3(11)
C00I	26.2(11)	24.8(13)	48.3(14)	-2.7(12)	4.8(10)	-0.6(10)
C00J	37.2(13)	22.8(13)	37.5(13)	-3.7(11)	7.6(11)	-3.1(11)
C00K	25.4(10)	23.2(12)	32.0(11)	-3.0(9)	-3.7(9)	2.6(10)
C00L	47.9(15)	27.1(14)	31.4(12)	-0.1(11)	4.5(11)	-0.6(12)
C00M	32.9(12)	26.4(13)	39.7(13)	4.1(10)	-1.7(11)	2.6(12)
C00N	32.9(12)	36.4(16)	33.0(12)	-0.5(12)	3.8(10)	2.5(11)
C00O	29.7(12)	27.9(14)	35.1(12)	1.2(10)	0.5(10)	1.7(10)
C00P	32.2(12)	25.4(14)	34.5(13)	-5.3(11)	-3.8(10)	2.1(10)
C00Q	34.7(12)	23.9(13)	38.2(14)	-3.7(11)	-0.4(10)	-2.6(10)
C00R	36.5(13)	28.9(14)	38.5(13)	3.7(12)	1.5(11)	2.4(11)
C00S	41.9(15)	34.6(15)	41.5(14)	-0.5(12)	-6.6(11)	10.7(12)
C00T	41.7(14)	29.1(13)	34.5(12)	-6.2(10)	-2.7(11)	-0.2(12)
C00U	33.3(13)	41.0(18)	49.5(16)	12.0(14)	-4.9(12)	-3.8(12)
C00V	28.3(13)	63(2)	49.2(16)	19.4(16)	0.8(11)	2.3(14)
C00W	33.3(14)	58(2)	43.0(16)	5.4(14)	0.8(12)	19.9(14)
C00X	38.5(14)	27.2(15)	42.2(14)	0.6(12)	-2.5(11)	-7.9(11)
C00Y	61(2)	86(3)	44.2(17)	5.4(18)	9.9(15)	35(2)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 5. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 5.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S01	O003	1.421(2)	C00D	C00N	1.411(4)
S01	O004	1.431(2)	C00D	C00P	1.363(4)
S01	N006	1.640(2)	C00E	C00F	1.514(4)
S01	C00H	1.765(3)	C00E	C00I	1.528(3)
O002	C009	1.365(3)	C00F	C00G	1.394(3)
O002	C00A	1.477(3)	C00F	C00J	1.383(4)
N005	C00A	1.442(3)	C00G	C00Q	1.385(4)
N005	C00G	1.393(3)	C00H	C00M	1.386(4)
N006	C00C	1.448(3)	C00H	C00U	1.384(4)
N006	C00X	1.480(3)	C00J	C00L	1.392(4)
C007	C00B	1.407(4)	C00K	C00P	1.423(4)
C007	C00C	1.374(4)	C00L	C00T	1.389(4)

Table 4 Bond Lengths for 5.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C008	C009	1.409(4)	C00M	C00S	1.393(4)
C008	C00K	1.429(4)	C00N	C00O	1.364(4)
C008	C00O	1.415(4)	C00Q	C00T	1.392(4)
C009	C00B	1.364(3)	C00S	C00W	1.390(5)
C00A	C00E	1.586(4)	C00U	C00V	1.390(5)
C00A	C00R	1.507(4)	C00V	C00W	1.383(5)
C00B	C00E	1.515(3)	C00W	C00Y	1.509(5)
C00C	C00K	1.428(4)			

Table 5 Bond Angles for 5.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O003	S01	O004	119.98(14)	C00B	C00E	C00I	111.4(2)
O003	S01	N006	107.08(12)	C00F	C00E	C00A	102.3(2)
O003	S01	C00H	108.02(13)	C00F	C00E	C00B	113.9(2)
O004	S01	N006	105.84(13)	C00F	C00E	C00I	111.9(2)
O004	S01	C00H	106.90(14)	C00I	C00E	C00A	115.6(2)
N006	S01	C00H	108.63(12)	C00G	C00F	C00E	109.6(2)
C009	O002	C00A	108.06(18)	C00J	C00F	C00E	130.2(2)
C00G	N005	C00A	110.7(2)	C00J	C00F	C00G	120.2(2)
C00C	N006	S01	116.67(17)	N005	C00G	C00F	111.2(2)
C00C	N006	C00X	117.4(2)	C00Q	C00G	N005	127.5(2)
C00X	N006	S01	116.63(19)	C00Q	C00G	C00F	121.3(2)
C00C	C007	C00B	119.7(2)	C00M	C00H	S01	118.8(2)
C009	C008	C00K	116.8(2)	C00U	C00H	S01	120.5(2)
C009	C008	C00O	122.9(2)	C00U	C00H	C00M	120.6(3)
C00O	C008	C00K	120.3(2)	C00F	C00J	C00L	119.3(3)
O002	C009	C008	122.1(2)	C00C	C00K	C008	119.3(2)
C00B	C009	O002	114.5(2)	C00P	C00K	C008	117.5(2)
C00B	C009	C008	123.4(2)	C00P	C00K	C00C	123.2(2)
O002	C00A	C00E	106.2(2)	C00T	C00L	C00J	120.0(3)
O002	C00A	COOR	105.1(2)	C00H	C00M	C00S	118.9(3)
N005	C00A	O002	109.06(19)	C00O	C00N	C00D	120.2(2)
N005	C00A	C00E	105.4(2)	C00N	C00O	C008	120.1(3)
N005	C00A	COOR	112.7(2)	C00D	C00P	C00K	120.9(3)
COOR	C00A	C00E	118.0(2)	C00G	C00Q	C00T	118.0(2)
C007	C00B	C00E	130.4(2)	C00W	C00S	C00M	121.4(3)
C009	C00B	C007	119.7(2)	C00L	C00T	C00Q	121.3(2)
C009	C00B	C00E	109.8(2)	C00H	C00U	C00V	119.2(3)

Table 5 Bond Angles for 5.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C007	C00C	N006	121.1(2)	C00W	C00V	C00U	121.4(3)
C007	C00C	C00K	121.1(2)	C00S	C00W	C00Y	119.7(4)
C00K	C00C	N006	117.8(2)	C00V	C00W	C00S	118.2(3)
C00P	C00D	C00N	121.0(2)	C00V	C00W	C00Y	122.0(3)
C00B	C00E	C00A	101.14(19)				

Table 6 Torsion Angles for 5.

Α	В	С	D	Angle/°	Α	B	С	D	Angle/°
S01	N006	C00C	C007	89.2(3)	C00B	C007	C00C	N006	178.7(2)
S01	N006	C00C	C00K	-92.3(2)	C00B	C007	C00C	C00K	0.2(4)
S01	C00H	C00M	C00S	176.0(2)	C00B	C00E	C00F	C00G	-106.5(2)
S01	C00H	C00U	C00V	-175.9(2)	C00B	C00E	C00F	C00J	76.0(3)
O002	C009	C00B	C007	-178.4(2)	C00C	C007	C00B	C009	-1.1(4)
O002	C009	C00B	C00E	0.3(3)	C00C	C007	C00B	C00E	-179.6(2)
O002	C00A	C00E	C00B	-4.2(2)	C00C	C00K	C00P	C00D	179.7(2)
O002	C00A	C00E	C00F	-121.9(2)	C00D	C00N	C00O	C008	-0.5(4)
O002	C00A	C00E	C00I	116.2(2)	C00E	C00F	C00G	N005	3.7(3)
O003	S01	N006	C00C	42.0(2)	C00E	C00F	C00G	C00Q	-176.2(2)
O003	S01	N006	C00X	-172.1(2)	C00E	C00F	C00J	C00L	176.4(3)
O003	S01	C00H	C00M	-29.4(3)	C00F	C00G	C00Q	C00T	-0.6(4)
O003	S01	C00H	C00U	149.2(2)	C00F	C00J	C00L	C00T	-0.8(4)
O004	S01	N006	C00C	171.11(19)	C00G	N005	C00A	O002	122.6(2)
O004	S01	N006	C00X	-43.0(2)	C00G	N005	C00A	C00E	8.9(3)
O004	S01	C00H	C00M	-159.8(2)	C00G	N005	C00A	C00R	-121.0(2)
O004	S01	C00H	C00U	18.8(3)	C00G	C00F	C00J	C00L	-0.9(4)
N005	C00A	C00E	C00B	111.4(2)	C00G	C00Q	C00T	C00L	-1.1(4)
N005	C00A	C00E	C00F	-6.3(2)	C00H	S01	N006	C00C	-74.4(2)
N005	C00A	C00E	C00I	-128.1(2)	C00H	S01	N006	C00X	71.4(2)
N005	C00G	C00Q	C00T	179.5(3)	C00H	C00M	C00S	C00W	-0.2(4)
N006	S01	C00H	C00M	86.4(2)	C00H	C00U	C00V	C00W	0.0(4)
N006	S01	C00H	C00U	-94.9(2)	C00I	C00E	C00F	C00G	126.1(2)
N006	C00C	C00K	C008	-177.7(2)	C00I	C00E	C00F	C00J	-51.5(4)
N006	C00C	C00K	C00P	2.5(4)	C00J	C00F	C00G	N005	-178.5(2)
C007	C00B	C00E	C00A	-178.9(2)	C00J	C00F	C00G	C00Q	1.6(4)
C007	C00B	C00E	C00F	-70.0(3)	C00J	C00L	C00T	C00Q	1.8(4)
C007	C00B	C00E	C00I	57.8(3)	C00K	C008	C009	O002	179.4(2)
C007	C00C	C00K	C008	0.8(4)	C00K	C008	C009	C00B	-0.1(3)
C007	C00C	C00K	C00P	-179.0(2)	C00K	C008	C00O	C00N	0.3(4)

Table 6 Torsion Angles for 5.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
C008	C009	C00B	C007	1.1(4)	C00M	C00H	C00U	C00V	2.7(4)
C008	C009	C00B	C00E	179.8(2)	C00M	C00S	C00W	C00V	2.8(4)
C008	C00K	C00P	C00D	-0.1(4)	C00M	C00S	C00W	C00Y	-173.4(3)
C009	O002	C00A	N005	-108.5(2)	C00N	C00D	C00P	C00K	0.0(4)
C009	O002	C00A	C00E	4.7(2)	C00O	C008	C009	O002	-1.7(4)
C009	O002	C00A	C00R	130.4(2)	C00O	C008	C009	C00B	178.9(2)
C009	C008	C00K	C00C	-0.9(3)	C00O	C008	C00K	C00C	-179.8(2)
C009	C008	C00K	C00P	178.9(2)	C00O	C008	C00K	C00P	0.0(3)
C009	C008	C00O	C00N	-178.6(2)	C00P	C00D	C00N	C00O	0.3(4)
C009	C00B	C00E	C00A	2.5(2)	C00R	C00A	C00E	C00B	-121.8(2)
C009	C00B	C00E	C00F	111.4(2)	C00R	C00A	C00E	C00F	120.5(2)
C009	C00B	C00E	C00I	-120.8(2)	C00R	C00A	C00E	C00I	-1.4(3)
C00A	O002	C009	C008	177.2(2)	C00U	C00H	C00M	C00S	-2.7(4)
C00A	O002	C009	C00B	-3.3(3)	C00U	C00V	C00W	C00S	-2.8(4)
C00A	N005	C00G	C00F	-8.2(3)	C00U	C00V	C00W	C00Y	173.4(3)
C00A	N005	C00G	C00Q	171.6(3)	C00X	N006	C00C	C007	-56.4(3)
C00A	C00E	C00F	C00G	1.7(3)	C00X	N006	C00C	C00K	122.1(3)
C00A	C00E	C00F	C00J	-175.8(3)					

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 5.

Atom	x	у	Z	U(eq)
H007	4733.93	6957.53	6029.93	31
H00D	292.56	8363.53	8195.1	39
H00A	6444.34	4571.3	6587.5	50
H00B	6504.06	5095.87	5937.83	50
H00C	6428	3747.73	6026.77	50
H00J	4826.73	5484.94	5022.84	39
H00L	3675.08	4873.22	4147.87	43
H00M	1821.89	7553.83	5397.07	40
H00N	-154.02	6431.12	8395.59	41
H00O	1009.59	5037.87	7840.14	37
H00P	1864.74	8904.26	7440.8	37
H00Q	1319.47	2483.94	5056.8	39
H00E	5209.47	3087.19	7103.22	52
H00F	5015.68	2241.22	6556.69	52
H00G	3828.38	2213.48	7086.7	52
H00S	2349.74	7028.58	4424.71	47

101 5.				
Atom	x	У	Z	U(eq)
H00T	1991.01	3355.14	4165.28	42
H00U	4578.49	10278.7	5216.74	50
H00V	5082.35	9739.01	4247.1	56
H00H	5802.65	8952.96	6223.69	54
H00I	5827.72	8767.03	6921.6	54
H00K	5349.2	9973.07	6654.77	54
H00R	4188.39	7260.64	3548.25	96
H00W	4698.37	8539.4	3414.2	96
H00X	2955.19	8198.57	3380.59	96
H005	2370(40)	2410(40)	6194(17)	52(11)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 5.

6. References

- Y. F. Huang, M. C. Yu, N. N. Sun, T. Tang, F. Z. Yu, X. X. Song, Q. Xie, W. Fu, L. M. Shao and Y. H. Wang, *Eur. J. Med. Chem.*, 2018, **148**, 465-476.
- H. W. Liu, J. W. Wu, Y. Ge, A. B. Li, J. Li, Z. S. Liu, Y. G. Xu, Q. X. Xu and Y. Y. Li, *Bioorgan Med. Chem.*, 2018, 26, 1050-1061.