Supporting Information

Hybridization of Short-range and Long-range Charge Transfer Boosts Roomtemperature Phosphorescence Performance

Tian-Miao Li^{#,a,b}, Li-Yuan Hu^{#,b}, Xin Zou^{*,c}, Jun-Yi Wang^b, Sheng Ni^b, Lei Liu^{*,a}, Xunwen Xiao^{*,b,d} and Xu-Feng Luo^{*,b}

^aCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China,

^bCollege of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.

^cFrontiers Science Center for Flexible Electronics (FSCFE), Northwestern Polytechnical University, Xi'an 710072,

^dState Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou 730000, China

1. Instrumentation and materials.

¹H and ¹³C NMR spectra were measured on a Bruker ARX 500 NMR spectrometer and reported as parts per million (ppm) from the internal standard TMS. High-resolution mass spectra were recorded on a MICROTOF-Q III instrument. Absorption and photoluminescence spectra were measured on a Shimadzu UV-3100 and a Hitachi F-4600 photoluminescence spectrophotometer, respectively. Steady-state photoluminescence and phosphorescence spectra, and lifetimes profiles were measured using a fluorescence spectrophotometer (Edinburgh FLS1000) equipped with a xenon arc lamp (Xe900), a nanosecond hydrogen flash-lamp (nF920), or a microsecond flash-lamp (μF900). The excitation wavelength is 358 nm, and all the phosphorescence spectra were recorded with a delay time of 8 ms. Photoluminescence efficiencies were collected on a Hamamatsu absolute PL quantum yield spectrometer C11347. The thermogravimetric analysis (TGA) curve was performed on a Pyris 1 DSC under nitrogen at a heating rate of 10 °C min⁻¹. The ground state calculations are based on optimized structure using Gaussian 09 by density functional theory (DFT) using the B3LYP functional with the 6-31G(d,p) basis set; excited state calculations were conducted by time-dependent density functional theory (TD-DFT) with B3LYP functional with the 6-31G(d,p) basis set.

2. Experimental section

Fig. S1 Synthesis of compound VTCzNL-Cl and VTCzNL-Br.

Fig. S2 ¹H NMR spectrum of VTCzNL-Cl in CDCl₃.

Fig. S3 ¹³C NMR spectrum of VTCzNL-Cl in CDCl_{3.}

Fig. S4 ¹H NMR spectrum of VTCzNL-Br in CDCl₃.

Fig. S5 ¹³C NMR spectrum of VTCzNL-Br in CDCl_{3.}

4. Crystal data

	VTCzNL-Cl	VTCzNL-Br		
Formula	$0.07(C_{42}H_{21}Cl_4N_3),$	0.07(C ₄₂ H ₂₁ Br ₄ N ₃)		
	0.07(C ₃ H ₇ NO)			
FW	54.92	60.15		
T (K)	273.15	273.15		
Wavelength (Å)	0.71073	0.71073		
Crystal system	monoclinic	triclinic		
Space group	$P2_1$ /c	<i>P</i> -1		
<i>a</i> (Å)	14.941(2)	8.565(3)		
<i>b</i> (Å)	30.117(5)	15.216(6)		
<i>c</i> (Å)	8.4340(13)	30.113(11)		
α (deg)	90	90		
β (deg)	102.447(4)	90		
γ (deg)	90	103.425(9)		
$V(Å^3)$	3706.0(10)	3817(2)		
Z	57	59		

$ ho_{ m calcd}~(m mg/cm^3)$	1.4025	1.5438
μ (Mo K α) (mm ⁻¹)	0.363	4.249
F(000)	1610.9	1732.3
Reflns collected	146124	106403
Data/restraints/params	6342/0/489	13464/0/883
GOF on F^2	1.116	0.992
R_I^a , wR_2^b [$I > 2\sigma(I)$]	0.0669, 0.1505	0.0795, 0.1230
R_1^a , wR_2^b (all data)	0.1401, 0.1968	0.3125, 0.2066
CCDC NO	2338861	2338875

 $\overline{R_1^{a} = \Sigma ||F_o| - |F_c|| / \Sigma F_o|} \cdot wR_2^{b} = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)]^{1/2}$

5. Fluorescence (77 K) and phosphorescence (77 K) spectra

Fig. S6 Fluorescence (77 K, black) and phosphorescence (77 K, red) spectra of VTCzNL-Cl.

Fig. S7 Fluorescence (77 K, black) and phosphorescence (77 K, red) spectra of VTCzNL-Br.

6. HPLC

Integration Results								
No.	Retention Time	Area mAU*min	Height mAU	Relative Area	Relative Height			
	min			%	%			
1	3.747	70.046	1010.019	95.56	98.83			
2	5.927	3.252	11.936	4.44	1.17			
Total		73.298	1021.955	100	100			

Fig. S9 the HPLC data of VTCzNL-Br.

Integration Results								
No.	No. Retention Time		Height mAU	Relative Area	Relative Height			
	min			%	%			
1	3.720	146.495	2117.797	95.48	99.48			
2	6.400	3.787	11.102	4.52	0.52			
Total		150.282	2128.900	100	100			

7. RTP performance

VTCzN	L-Cl								
VTCzN	L-Br								
	7 Cease of	f external	excitati	ion					
Time		0.2 S		0.4 S		0.6 S		0.8 S	1.0 S
		Fig. S10	illustrat	ion of af	terglow	for two	materia	als.	

8. Thermogravimetric analysis

Fig. S11 TGA curves of VTCzNL-Cl and VTCzNL-Br.

9. Lifetimes

Fig. S11 Transient lifetimes of VTCzNL-Cl and VTCzNL-Br in toluene solutions at 77 K (a); Transient lifetimes of VTCzNL-Cl and VTCzNL-Br doped in TPP at 77 K.

Fig. S12 Fluorescence and phosphorescence spectra of TPP (a); Comparison of fluorescence and phosphorescence spectra of VTCzNLCl doped complexes, VTCzNLCl doped complexes, and TPP (b).