Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Production, characterization and environmental remediation of emerging phosphorus-rich

biochar/hydrochar: A comprehensive review

Qilong Ge ^a *, ChunJuan Dong ^a, GuoYing Wang ^b, Jing Zhang ^a, Rui Hou ^c

- ^a Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan 030032, China
- ^b College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

° South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

Corresponding Author: Qilong Ge

Corresponding Author's E-mail: Geqilongde@163.com

Table S1 Available information on production and environmental application of P-rich CHAR					
Preparation condition	Feedstock	Modifying agents Application fields		Reference	
Pyrolysis, anaerobism, 550°C for 2h	corn stalk, bamboo, wood, and rice husk	Cd and Cu contaminated K ₃ PO ₄ paddy field soil remediation		1	
Pyrolysis, anaerobism, 500°C for 2h	rape straw	KH2PO4/ Ca(H2PO4)2Pb, Cd, and Cu contaminated silt soil remediation		2	
Pyrolysis, anaerobism 500°C for 2 h	Pine tree sawdust and switchgrass	triple superphosphate and bone meal	triplePb, Cu, and Cdsuperphosphatecontaminatedand bone mealsoil.remediation		
Pyrolysis, anaerobism, 600°C for 3 h	Date palm leaves	KH ₂ PO ₄	Cd, Cu, Pb, and Zn contaminated soil remediation	4	
Pyrolysis anaerobism 500°C for 4 h	Wheat straw	KH ₂ PO ₄	Stabilization of Cr, Cu, Pb, and Zn during anaerobic digestion of swine manure	5	
Pyrolysis, anaerobism, 650°C for 2 h	Pig carcass- derived biochar	The total P concentration of dead pig bodies was greater than 80 g/kg	Cd and Pb contaminated paddy soil remediation	6	
Pyrolysis, anaerobism, 700°C for 2 h	Bamboo	KH ₂ PO ₄ modification and crosslink Mg-Al double-hydroxide composite	uranium contaminated soil remediation	7	
Pyrolysis impregnation	pristine biochar	red P	Cd and Pb contaminated soil remediation	8	

Pyrolysis anaerobism 500°C for 2 h	Rape straw	Ca(H ₂ PO ₄) ₂ ·H ₂ O and KH ₂ PO ₄	Pb, Cd, and Cu contaminated soil remediation	9
Pyrolysis anaerobism 480°C for 2 h	Maize straw and cow dung	KH ₂ PO ₄	Pb, Cd contaminated soil remediation	10
Pyrolysis anaerobism 550°C for 2 h	camphorwood chips, bamboo offcut, cornstalk and rice husk	K₃PO₄·3H₂O	Cu(II), Cd(II), As(V) contaminated soil remediation	11
Pyrolysis, anaerobism 500°C and 2 h	Rape straw	Ca(H ₂ PO ₄) ₂ H ₂ O, KH ₂ PO ₄ ,	Pb ²⁺ adsorption in water	12
Pyrolysis, anaerobism 350°C, 550°C, 740°C and 2 h	Bamboo	Na ₂ HPO ₄	Cd ²⁺ adsorption in water	13
Hydrochar, anaerobism 230°C for 2h	Fresh banana peels	H ₃ PO ₄	Pb ²⁺ adsorption in water	14
Hydrochar, anaerobism 230°C for 2 h	Fresh and dehydrated banana peels	H ₃ PO ₄	Pb ²⁺ adsorption in water	15
Pyrolysis, anaerobism 200°C, 350°C, 500°C and 650°C for 2 h	Pine sawdust	H ₃ PO ₄	Cu ²⁺ and Cd ²⁺ adsorption in water	16
Pyrolysis, anaerobism 450°C for 1 h	Chicken feather	H ₃ PO ₄	Cd ²⁺ and Pb ²⁺ adsorption in water	17
Hydrochar, in air atmosphere, 250°C for 2 h	Pomelo peel	H ₃ PO ₄	Ag ⁺ and Pb ²⁺ adsorption in water	18

Hydrochar, in air atmosphere, 120°C for 2h	Cauliflower leaves	H ₃ PO ₄	Cu ²⁺ and Pb ²⁺ adsorption in water	19
Pyrolysis, anaerobism 600°C for 1 h	Coffee residue	H ₃ PO ₄	Pb ²⁺ and Cd ²⁺ adsorption in water	20
Pyrolysis, anaerobism 350°C, 500°C, 600°C for 2 h	Pine tree sawdust	H ₃ PO ₄	Pb ²⁺ adsorption in water	21
Pyrolysis, anaerobism 350°C for 1 h	Taraxacum mongolicum Hand-Mazz	KH ₂ PO ₄	As ³⁺ adsorption in water	22
Pyrolysis, Oxygen limiting 200°C, 350°C for 4 h	air-dried dairy manure	_	Pb ²⁺ adsorption in water	23
Hydrochar, anaerobism 450°C for 2 h	water hyacinth	H ₃ PO ₄	Pb ²⁺ adsorption in water	24
Hydrochar, anaerobism 240°C for 2 h	corn straw	H ₃ PO ₄	Pb ²⁺ adsorption in water	25
Pyrolysis anaerobism 550°C for 2 h	bamboo cutoff	Na ₂ HPO ₄	Cd ²⁺ adsorption in water	26
Pyrolysis anaerobism 400°C for 2 h	reed straw	Potassium dihydrogen phosphate; hydroxyapatite	Pb ²⁺ adsorption in water	27
Pyrolysis anaerobism 500°C for 2 h	Rape straw	$Ca(H_2PO_4)_2 \cdot H_2O$ and KH_2PO_4	Pb ²⁺ adsorption in water	28
Pyrolysis anaerobism 650°C for 4 h	Pine sawdust	H ₃ PO ₄	Cu ²⁺ and Cd ²⁺ adsorption in water	29
Pyrolysis anaerobism 500°C for 2 h	Apple tree branches	$\label{eq:KH2PO4} \begin{array}{l} KH_2PO_4,\\ K_2HPO_4\cdot 3H_2O,\\ \text{and}\ K_3PO_4\cdot 3H_2O \end{array}$	Cd ²⁺ adsorption in water	30

Pyrolysis anaerobism 550°C, 650°C, 750°C for 2 h	bamboo	K ₃ PO ₄	K ₃ PO ₄ Cd ²⁺ adsorption in water	
Hydrochar, anaerobism 400°C for 1 h	cow manure	_	Pb ²⁺ and Cd ²⁺ adsorption in water	32
Pyrolysis anaerobism 500°C for 1 h	eucalyptus wood	H ₃ PO ₄	Cr ⁶⁺ adsorption in water	33
Pyrolysis, anaerobism 550°C, for 1 h	rice straw	Ca(H ₂ PO ₄) ₂	Carbon retention	34
Pyrolysis, anaerobism 500°C for 2 h	cellulose, xylan and lignin solid powders	Ca(H ₂ PO ₄) ₂	Carbon retention	35
Hydrochar, anaerobism 200°C, 260°C for 2 h	Microalgae	cultured in wastewater	P slow-release	36
Pyrolysis, anaerobism 550°C, for 2 h	cotton straw and bentonite	Mg ₃ (PO ₄) ₂ solution	Mg ₃ (PO ₄) ₂ solution P slow-release	
Pyrolysis anaerobism 600°C for 2 h,3 h,4 h	fermentation waste		P slow-release	38
Hydrochar, anaerobism 220°C, 240°C, 260°C for 2 h	wetland plant	_	P slow-release	39
Pyrolysis anaerobism 450°C for 2 h	sugarcane straw	H ₃ PO ₄ P slow-release		40
Pyrolysis anaerobism 600°C for 5 h	Sewage sludge	_	P slow-release	41

Note: "—" means "without modifying agent".

Samula	Element content					Defenences	
Sample	C(%)	H(%)	O(%)	O/C	H/C	Kelerences	
Banana peels	59.71	7.29	24.37	0.408	0.122		
H ₃ PO ₄ modified banana peels hydrochar	63.11	6.37	21.12	0.334	0.100	14	
Cauliflower leaves	59.17	7.02	23.57	0.398	0.188		
H ₃ PO ₄ modified cauliflower leaves hydrochar	67.13	5.37	13.47	0.201	0.074	42	
cow manure	44.37	4.58	23.25	0.524	0.126		
K ₃ PO ₄ modified cow manure hydrochar	46.33	4.62	17.35	0.374	0.099	43	
verticillata	—	—	—				
verticillata hydrochar	62.28	5.99	10.34	0.166	0.096		
spicatum	—	—	—			20	
spicatum hydrochar	52.66	4.81	13.09	0.248	0.091	39	
indica	—	—	—				
Indica hydrochar	59.09	5.42	16.93	0.286	0.092		
Corn straw	46.53	5.85	39.55	0.85	0.127		
phosphate rack-modified corn straw hydrochar	67.37	4.72	18.39	0.27	0.055	44	

Table S2 Basic physiochemical properties of P-rich hydrochar derived from different raw biomass

Note: The raw biomass was calculated after removing the moisture. "-" means not reported.

References:

- 1 H. Zhang, J. Shao, S. Zhang, X. Zhang and H. Chen, Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil, J. Hazard. Mater., 2020, 121349.
- 2 R. Gao, H. Hu, Q. Fu, Z. Li, Z. Xing, U. Ali, J. Zhu and Y. Liu, Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry, Sci. Total Environ., 2020, 730, 139119.
- 3 L. Zhao, X. Cao, W. Zheng, J. W. Scott, B. K. Sharma and X. Chen, Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil, ACS Sustain. Chem. Eng., 2016, 4, 1630-1636.
- 4 A. R. A. Ahmad, Munir, Usman, A. S. Al-Faraj, A. Ahmad, Mahtab, Sallam and M. I. Al-Wabel, Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (*Zea mays* L.) plants, Chemosphere, 2018, 194, 327-339.
- 5 S. Yang, Q. Wen and Z. Chen, Effect of KH₂PO₄-modified biochar on immobilization of Cr, Cu, Pb, Zn and as during anaerobic digestion of swine manure, Bioresour. Technol., 2021, 339, 125570.
- 6 X. Yang, H. Pan, S. M. Shaheen, H. Wang and J. Rinklebe, Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil, Environ. Int., 2021, 156, 106628.
- 7 P. Lyu, G. Wang, Y. Cao, B. Wang and N. Deng, Phosphorus-modified biochar cross-linked Mg-Al layered double-hydroxide composite for immobilizing uranium in mining contaminated soil, Chemosphere, 2021, 276, 130116.
- 8 P. Zhang, B. Xue, L. Jiao, X. Y. Meng, L. Y. Zhang, B. X. Li and H. W. Sun, Preparation of ballmilled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil, Sci. Total Environ., 2022, 813,152648.
- 9 R. L. Gao, H. Q. Hu, Q. L. Fu, Z. H. Li, Z. Q. Xing, U. Ali, J. Zhu and Y. H. Liu, Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: speciation transformation, risk evaluation and mechanism inquiry, Sci. Total Environ., 2020, 730, 139119.
- 10 F. Han, S. Y. An, L. Liu, L. Q. Ma, Y. Wang and L. Yang, Simultaneous enhancement of soil properties along with water-holding and restriction of Pb-Cd mobility in a soil-plant system by the addition of a phosphorus-modified biochar to the soil, J. Environ. Manag., 2023, 345, 118827.

- 11 H. Zhang, J. G. Shao, S. H. Zhang, X. Zhang and H. P., Chen, Effect of phosphorus-modified biochars on immobilization of Cu(II), Cd(II), and As(V) in paddy soil, J. Hazard. Mater., 2020, 390,121349.
- 12 R. Gao, Q. Fu, H. Hu, Q. Wang, Y. Liu and J. Zhu, Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate, J. Hazard. Mater., 2019, 371, 191-197.
- 13 S. Zhang, H. Zhang, J. Cai, X. Zhang, J. Zhang and J. Shao, Evaluation and prediction of cadmium removal from aqueous solution by phosphate-modified activated bamboo biochar, Energy and Fuels, 2018, 32, 4469-4477.
- 14 N. Zhou, H. Chen, Q. Feng, D. Yao, H. Chen, H. Wang, Z. Zhou, H. Li, Y. Tian and X. Lu, Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels, J. Clean. Prod., 2017, 165, 221-230.
- 15 N. Zhou, H. Chen, J. Xi, D. Yao, Z. Zhou, Y. Tian and X. Lu, Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization, Bioresour. Technol., 2017, 232, 204–210.
- 16 H. Peng, P. Gao, G. Chu, B. Pan, J. Peng and B. Xing, Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars, Environ. Pollut., 2017, 229, 846–853.
- 17 H. Chen, W. Li, J. Wang, H. Xu, Y. Liu, Z. Zhang, Y. Li and Y. Zhang, Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter, Bioresour. Technol., 2019, 292, 121948.
- 18 T. Zhao, Y. Yao, D. Li, F. Wu, C. Zhang and B. Gao, Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II), Sci. Total Environ., 2018, 640–641, 73–79.
- 19 Q. Ge, Q. Tian, M. Moeen and S. Wang, Facile synthesis of cauliflower leaves biochar at low temperature in the air atmosphere for Cu(II) and. Pb(II) removal from water, Materials, 2020, 13, 3163.
- 20 J. A. Kim, K. Vijayaraghavan, D. H. K. Reddy and Y. S. Yun, A phosphorus- enriched biochar fertilizer from bio-fermentation waste: A potential alternative source for phosphorus fertilizers, J. Clean. Prod., 2018, 196, 163-171.
- 21 L. Zhao, W. Zheng, O. Mašek, X. Chen, B. Gu, B. K. Sharma and X. Cao, Roles of phosphoric acid in biochar formation: synchronously improving carbon retention and sorption capacity, J. Environ.

Qual., 2017, 46, 393-401.

- 22 W. Ahmed, S. Mehmood, A. Núñez-Delgado, S. Ali, M. Qaswar, A. Shakoor, A. A. Maitlo and D. Y. Chen, Adsorption of arsenic (III) from aqueous solution by a novel phosphorus-modified biochar obtained from *Taraxacum mongolicum* Hand-Mazz: Adsorption behavior and mechanistic analysis, J. Environ. Manage., 2021, 292. 112764.
- 23 X. Cao, L. Ma, B. Gao and W. Harris, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Technol., 2009, 43, 3285–3291.
- 24 Y. Huang, S. Li, J. Chen, X. Zhang and Y. Chen, Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H₃PO₄ activation: Adsorption capacity, kinetic and isotherm studies, Appl. Surf. Sci., 2014, 293, 160-168.
- 25 Q. Jiang, W. Xie, S. Han, Y. Wang and Y. Zhang, Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H₃PO₄: An analysis of surface property and interface mechanism, Colloids Surfaces A Physicochem. Eng. Asp., 2019, 583, 123962.
- 26 S. H. Zhang, H. Zhang, J. Cai, X. Zhang, J. J. Zhang and J. A. Shao, Evaluation and prediction of CadmiuM removal from aqueous solution by phosphate-modified activated bamboo biochar. Energy Fuel, 2018, 32, 4469–4477.
- 27 H. B. Cui, T. T. Dong, L. L. Hu, R. Z. Xia, J. Zhou and J. Zhou, Adsorption and immobilization of soil lead by two phosphate-based biochars and phosphorus release risk assessment, Sci. Total Environ., 2022, 824, 153957.
- 28 R. L. Gao, Q. L. Fu., H. Q. Hu, Q. Wang, Y. H. Liu and J. Zhu, Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate, J. Hazard. Mater., 2019, 371, 191–197.
- 29 H. Peng, P. Gao, G. Chu, B. Pan, J. Peng and B. Xing, Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars, Environ. Pollut., 2017, 229, 846–853.
- 30 Q. Wang, C. J. Duan, C. Y. Xu and Z. C. Geng, Efficient removal of Cd(II) by phosphate-modified biochars derived from apple tree branches: processes, mechanisms, and application. Sci. Total Environ. 2022, 819, 152876.
- 31 H. Zhang, W. Liao, X. Zhou, J. Shao, Y. Chen, S. Zhang, Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar, Bioresour. Technol., 2022, 344,126273.

- 32 Y. Wen, D. X. Chen, Y. Zhang, H. B. Wang and R. Xu, Towards a better understanding on adsorption mechanism of various heavy metal with phosphorus rich hydrochar, 2024, 17(2), 105530.
- 33 H. T. Zeng, H. H. Zeng, H. Zhang, A. Shahab, K. Zhang and Y. Q. Lu, Efficient adsorption of Cr(VI) from aqueous environments by phosphoric acid activated eucalyptus biochar, J. Clean Prod., 2021, 286, 124964.
- 34 F. Li, X. Cao, L. Zhao, J. Wang and Z. Ding, Effects of mineral additives on biochar formation: Carbon retention, stability, and properties, Environ. Sci. Technol., 2014, 48, 11211-11217.
- 35 F. Li, X. Gui, W. Ji and C. Zhou, Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin, Chemosphere, 2020, 251, 126335.
- 36 Q. Chu, T. Lyu, L. Xue, L. Yang, Y. Feng, Z. Sha, B. Yue, R. J. G. Mortimer, M. Cooper and G. Pan, Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to cropsoil systems as slow-release fertilizers, J. Clean. Prod., 2021, 283, 124627.
- 37 X. An, Z. Wu, X .Liu, W. Shi, F. Tian and B. Yu, A new class of biochar-based slow-release phosphorus fertilizers with high water retention based on integrated co-pyrolysis and co-polymerization, Chemosphere, 2021, 285, 131481.
- 38 J. A. Kim, K. Vijayaraghavan, D. H. K. Reddy and Y. S. Yun, A phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential alternative source for phosphorus fertilizers, J. Clean. Prod., 2018, 196, 163-171.
- 39 X. Cui, M. Lu, M. B. Khan, C. Lai, X. Yang, Z. He, G. Chen and B. Yan, Hydrothermal carbonization of different wetland biomass wastes: phosphorus reclamation and hydrochar production, Waste Manag., 2020, 102, 106-113.
- 40 B. Borges, M. S. C. Barreto, P. S. Pavinato, A. P. B. Teles, M. Strauss, D. B. Strauss, C. B. Leandro,
 P. C. Alves and H. C. J. Franco, Abdala Chemical and spectroscopic evaluations supporting superior
 P availability after biochar-P fertilizer application, Soil Tillage Res., 2022, 223, 105487.
- 41 C. C. de Figueiredo, A. Reis, A. S. de Araujo, L. E. B. Blum, K, Shah and J. Paz-Ferreiro, Assessing the potential of sewage sludge-derived biochar as a novel phosphorus fertilizer: influence of extractant solutions and pyrolysis temperatures, Waste Manag., 2021, 124, 144–153.
- 42 Q. Ge, Q. Tian, K. Feng, S. Wang and R. Hou, Effects of co-application of phosphorus-modified hydrochar and zeolite on the release of soil available phosphorus. Environmental Science Research,

2022, 35(1), 219-229. DOI: 10.13198/j.issn.1001-6929.2021.08.27 (In Chinese).

- 43 Y. H. Fei, D. Zhao, Y. D. Cao, H. Huot, Y. T. Tang, H. Zhang and T. Xiao, Phosphorous retention and release by sludge-derived hydrochar for potential use as a soil amendment, J. Environ. Qual., 2019, 48, 502-509.
- 44 D. Daer, L. Luo, L. W. Shang, J. X. Wang, C. Z. Wu and Z. G. Liu, Co-hydrothermal carbonization of waste biomass and phosphate rock: promoted carbon sequestration and enhanced phosphorus bioavailability, 2024, 6, 70.