Electronic Supplementary Information (ESI)

Impact of POM's coordination mode and Mo-hybrid constituents on binding, stability, and catalytic properties of hybrid (pre)catalysts

Jana Pisk,^a Višnja Vrdoljak,^{*a} Mirna Mandarić,^a Tomica Hrenar,^a Dominique Agustin,^{b,c} and Mirta Rubčić^a

Contents

1. PXRD	
2. IR-ATR spectra	
3. SCXRD	7
4. TGA	
5. Catalytic studies	

^{a.} University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000 Zagreb, Croatia; E-mail: visnja.vrdoljak@chem.pmf.hr

- ^b LCC-CNRS (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP44099, CEDEX 4, 31077 Toulouse, France
- ^c Department of Chemistry, IUT Paul Sabatier, Université Paul Sabatier, University of Toulouse, Av. G. Pompi-dou, CS20258, 81104 Castres, France

Figure S1. PXRD patterns of hybrid organic inorganic compounds: (a) **1H**^w, **1H**^a · 2CH₃COCH₃, **1H**; (b) **2H**^w·2CH₃COCH₃, **2O**·CH₃CN·H₂O, and **2H**; (c) **3H**^w·2CH₃COCH₃, **3H**·2CH₃CN, and **3H**. The orange lines indicate patterns obtained by powder diffraction, while the blue lines indicate patterns calculated from the X-ray single-crystal structures of the corresponding compounds.

Figure S2. Comparison of IR-ATR spectra of: 1H^w (top), 1H^a (middle), and 1H (bottom)

Figure S3. Comparison of IR-ATR spectra of: $2H^{w} \cdot 2CH_3COCH_3$ (top), 2H (middle), and $2O \cdot 2CH_3CN \cdot H_2O$ (bottom)

Figure S4. Comparison of IR-ATR spectra of: **3H**^w·2CH₃COCH₃ (top), **3H**·2MeCN (middle), and **3H** (bottom)

3. SCXRD

a)

Figure S5. Molecular structures of: a) **2H** and b) **3H**^w·2CH₃COCH₃, c) **1H**^w and d) **2H**^w·2CH₃COCH₃ and e) **1H** with the atom labeling schemes. In a), b) and d) ellipsoids are drawn at 30% probability level, whereas in the remaining cases are drawn at 50% probability level. Hydrogen atoms are shown as spheres of arbitrary small radii. Dihedral angles between the planes of the pyridyl and the phenyl ring of the aldehyde residue amount to ca 3 ° (for **2H**), 3.6 ° (for **3H**^w·2CH₃COCH₃), 14.2 ° (for **1H**^w), 4.4 ° (for **2H**^w·2CH₃COCH₃) and 6.9 ° (for **1H**).

Figure S6. Hydrogen bonding motif observed in $\mathbf{1H}^{a} \cdot 2CH_{3}COCH_{3}$ revealing discrete $D_{1}^{1}(2)$ hydrogen bond motifs involving protonated pyridine moiety and the acetone molecule (N3–H3···O7 hydrogen bond) shown down the: (a) a-axis, (b) b-axis. Crystal structure of $\mathbf{1H}^{a} \cdot 2CH_{3}COCH_{3}$ along the: (c) *a*-axis, (d) *b*-axis and (e) *c*-axis. In (c)-(e) hydrogen bonds are shown as yellow dashed lines and C–H···O interactions as black dashed lines, while the Lindqvist anions (Mo₆O₁₉^{2–}) are shown in polyhedral representation.

(c)

Figure S7. (a) Hydrogen bonding seen in **2H^w**·2CH₃COCH₃. Supramolecular chains of $[MoO_2(HL)(H_2O)]^+$ units and acetone molecules are established *via* discrete $D_1^1(2)$ motifs, namely N3–H3···O7, O6–H6A···O7 hydrogen bonds. Such supramolecular chains are further bridged by Mo₆O₁₉^{2–} anions forming $D_2^2(7)$ motifs by O6–H6B···O17 hydrogen bonds. Packing in **2H^w**·2CH₃COCH₃ along the: (b) *a*-axis, and (c) *b*-axis. In (b) and (c) hydrogen bonds are shown as yellow dashed lines and C–H···O interactions as black dashed lines, while the Lindqvist anions (Mo₆O₁₉^{2–}) are shown in polyhedral representation.

Figure S8. (a) Hydrogen bonding seen in $\mathbf{3H}^{\mathbf{w}} \cdot 2CH_3COCH_3$. O6–H6A…N2 hydrogen bonds associates $[MoO_2(HL)(H_2O)]^+$ units into $R_2^2(10)$ supramolecular rings, which are further associated through $Mo_6O_{19}^{2-}$ anions *via* $D_2^2(7)$ motifs. Crystal structure of $\mathbf{3H}^{\mathbf{w}} \cdot 2CH_3COCH_3$ along the: (b) *a*-axis, (c) *b*-axis and (d) *c*-axis. In (b)-(d) hydrogen bonds are shown as yellow dashed lines and C–H…O interactions as black dashed lines, while the Lindqvist anions ($Mo_6O_{19}^{2-}$) are shown in polyhedral representation.

Figure S9. (a) Hydrogen bonding pattern found in **1H**^w. Crystal structure of **1H**^w along the: (a) *a*-axis, and (b) *b*-axis. In (a) and (b) hydrogen bonds are shown as yellow dashed lines and C–H…O interactions as black dashed lines, while the Lindqvist anions ($Mo_6O_{19}^{2-}$) are shown in polyhedral representation.

Figure S10. Complex hydrogen-bonded network observed in **20**·2CH₃CN·H₂O shown down the: (a) *a*-axis, and (b) *c*-axis. In (c) and (d) identical fragments of crystal structure are shown down the *a*-axis and *c*-axis, respectively. In (c) and (d), solvent acetonitrile molecules are shown in a spacefill style, classical hydrogen bonds with yellow dashed lines and C–H…O interactions are shown as black dashed lines, while the octamolybdate anions (Mo₈O₂₆^{4–}) are shown in polyhedral representation.

Figure S11. (a) Hydrogen-bonded supramolecular layers found in **1H** form in the *ab*-plane (view down the *c*-axis). (b) Crystal packing in **1H** shown down the *c*-axis. In (a) and (b) hydrogen bonds are shown as yellow dashed lines and in (b) C–H···O interactions are shown as black dashed lines, while the Lindqvist anions ($Mo_6O_{19}^{2-}$) are shown in polyhedral representation.

Figure S12. Fragments of crystal structures for **2H** showing: (a) hydrogen bonded chains, spreading along the *b*-axis, as a main packing motif; and the packing along the (b) *a*-axis, (c) *b*-axis and (d) *c*-axis. In (a) and (d) hydrogen bonds are shown as yellow dashed lines and C–H…O interactions as black dashed lines, whereas in (b) and (c) hydrogen bonds are shown as black dashed lines and C–H…O interactions as yellow dashed lines. In (b)-(d) Lindqvist anions ($Mo_6O_{19}^{2-}$) are shown in polyhedral representation.

Figure S13. Fragments of crystal structures for **3H** showing: (a) hydrogen bonded chains, spreading along the *b*-axis, as a main packing motif; and the packing along the (b) *a*-axis, (c) *b*-axis and (d) *c*-axis. In (a)-(d) hydrogen bonds are shown as yellow dashed lines and C–H…O interactions as black dashed lines. In (b)-(d) Lindqvist anions ($Mo_6O_{19}^{2-}$) are shown in polyhedral representation.

	1Hª·2CH₃COCH₃	2H ^w ·2CH₃COCH₃	3H ^w ·2CH₃COCH₃	1H ^w
No1_01	1.920(4)	1.927(4)	1.929(5)	1.920(2)
Mo1-01	2 014(3)	2 9(4)	2.037(5)	2 013(3)
M01-02	1 698(5)	1 679(4)	1 691(5)	1 689(3)
M01-03	1.696(4)	1 703(3)	1.691(5)	1 709(3)
M01-04	2,208(2)	2.271(4)	2 225(5)	2.408(2)
Mo1-06	2.396(3)	2.371(4)	2.335(5)	2.408(2)
Mo1-N1	2.238(4)	2.244(4)	2.255(5)	2.256(3)
N1-N2	1.388(6)	1.397(7)	1.388(7)	1.402(4)
C7-N1	1.295(7)	1.278(8)	1.291(9)	1.285(4)
C8-N2	1.309(7)	1.294(7)	1.313(9)	1.302(4)
C8–O2	1.307(6)	1.324(5)	1.301(9)	1.315(4)
01-Mo1-02	147.38(15)	147.30(13)	149.6(2)	149.67(9)
01-Mo1-03	1.69(19)	99.35(19)	99.6(2)	101.85(11)
01-Mo1-04	101.60(18)	104.07(18)	104.0(2)	103.16(10)
01-Mo1-06	76.95(14)	78.69(15)	81.3(2)	79.18(9)
01-M01-N1	80.98(16)	82.01(16)	81.7(2)	81.20(9)
O2-Mo1-O3	98.71(19)	1.12(17)	96.3(2)	95.04(11)
02-Mo1-04	97.90(15)	95.74(16)	96.3(2)	96.26(11)
02-Mo1-06	78.93(13)	77.46(14)	78.9(2)	79.93(9)
02-Mo1-N1	71.93(14)	71.65(16)	71.5(2)	71.50(10)
03-Mo1-04	106.(19)	105.39(19)	105.6(3)	105.41(13)
03-Mo1-06	168.78(17)	169.71(17)	170.5(2)	169.80(12)
03-Mo1-N1	93.28(19)	91.03(18)	94.0(2)	98.24(12)
04-Mo1-06	85.22(14)	84.85(16)	83.2(2)	84.07(11)
04-Mo1-N1	159.54(15)	161.05(16)	158.1(2)	154.33(11)
06-Mo1-N1	75.54(13)	78.71(15)	76.72(19)	71.79(9)

Table S1. Selected bond lengths (Å) and angles (°) for compounds: 1H^a·2CH₃COCH₃, 2H^w·2CH₃COCH₃, 3H^w·2CH₃COCH₃ and 1H^w

	1H	2Н	ЗН	3H·2CH₃CN
Mo1-01	1.915(4)	1.934(7)	1.909(6)	1.912(3)
Mo1-02	2.9(4)	2.026(7)	2.018(6)	2.021(2)
Mo1-03	1.695(4)	1.707(8)	1.689(6)	1.680(4)
Mo1-04	1.710(4)	1.715(7)	1.708(6)	1.715(3)
Mo1-06	2.437(4)	2.723(6)	2.705(5)	2.551(3)
Mo1-N1	2.213(5)	2.213(9)	2.231(7)	2.223(3)
N1-N2	1.4(7)	1.388(12)	1.389(9)	1.389(5)
C7-N1	1.292(7)	1.299(12)	1.296(10)	1.286(5)
C8-N2	1.283(7)	1.290(12)	1.291(10)	1.295(5)
C8–O2	1.324(7)	1.326(12)	1.318(10)	1.320(5)
01-Mo1-02	148.65(15)	147.8(3)	147.1(2)	146.49(13)
01-Mo1-03	99.71(17)	101.1(3)	103.0(3)	1.54(16)
01-Mo1-O4	101.43(17)	101.2(3)	101.1(3)	101.82(15)
01-Mo1-06	81.67(15)	85.4(2)	73.38(19)	80.45(11)
01-Mo1-N1	81.(17)	80.0(3)	80.1(2)	80.52(13)
02-Mo1-03	99.40(17)	99.0(3)	97.7(3)	101.30(16)
02-Mo1-04	96.30(17)	96.9(3)	97.0(3)	95.59(15)
02-Mo1-06	75.46(13)	74.2(2)	95.49(19)	74.87(11)
02-Mo1-N1	72.21(16)	71.5(3)	71.7(2)	71.75(13)
03-Mo1-04	107.27(18)	106.3(4)	106.7(3)	107.24(18)
03-Mo1-06	170.12(16)	173.2(3)	171.0(3)	172.80(15)
O3-Mo1-N1	96.92(17)	101.4(3)	98.9(3)	97.32(16)
04-Mo1-06	81.89(16)	74.3(3)	76.2(2)	79.39(13)
04-Mo1-N1	154.75(18)	151.4(3)	153.3(3)	154.29(15)
06-Mo1-N1	73.55(14)	77.3(2)	77.3(2)	75.75(11)

Table S2. Selected bond lengths (Å) and angles (°) for compounds: 1H, 2H, 3H, 3H·2CH₃CN and 2O·CH₃CN·H₂O.

	20·CH ₃ CN·H ₂ O					
Mo1-01	1.911(4)	01–Mo1–O2	150.15(17)			
Mo1-02	2.023(4)	09-Mo2-N4	158.82(16)			
Mo1-03	1.689(5)	01-Mo1-03	100.1(2)			
Mo1-04	1.693(4)	011-Mo2-N4	78.94(13)			
Mo1-06	2.401(3)	01-Mo1-O4	102.26(19)			
Mo1–N1	2.238(4)	011-Mo3-012	105.47(16)			
Mo2–O6	1.708(3)	01-Mo1-O6	80.32(17)			
Mo2–07	1.918(3)	011-Mo3-013	90.28(14)			
Mo2–08	1.999(3)	01-Mo1-N1	81.20(17)			
Mo2–O9	1.704(4)	011-Mo3-014	101.69(15)			
Mo2-011	2.380(3)	02-Mo1-O3	97.2(2)			
Mo2–N4	2.222(4)	011–Mo3–O15	104.39(14)			
Mo3-011	1.732(3)	02-Mo1-O4	96.22(19)			
Mo3-012	1.711(4)	011-Mo3-020	161.03(13)			
Mo3-013	2.243(3)	02-Mo1-06	79.51(15)			
Mo3-014	1.911(3)	012–Mo3–O13	164.18(14)			
Mo3-015	1.907(3)	02-Mo1-N1	71.65(16)			
Mo3-020	2.442(3)	012–Mo3–O14	96.61(15)			
Mo4-014	1.891(3)	03-Mo1-O4	105.5(2)			
Mo4–016	1.700(3)	012–Mo3–O15	98.37(15)			
Mo4–017	1.716(4)	03-Mo1-06	172.75(15)			
Mo4–O20	2.334(3)	012-Mo3-O20	93.44(13)			
Mo4–021	2.298(3)	03-Mo1-N1	101.40(18)			
Mo4–025	1.999(3)	013-Mo3-014	78.31(13)			
Mo11-040	1.702(4)	04-Mo1-O6	81.41(17)			
Mo5–015	1.930(3)	013-Mo3-015	78.73(13)			
Mo5–018	1.699(4)	04-Mo1-N1	151.7(2)			
Mo5–019	1.708(3)	013–Mo3–O20	70.78(11)			
Mo5–O20	2.276(3)	06–Mo1–N1	71.45(14)			
Mo5–O28	2.374(3)	014–Mo3–O15	145.07(14)			
Mo5–O29	1.973(3)	O6–Mo2–O7	99.12(15)			
Mo6-013	1.753(3)	014–Mo3–O20	74.02(12)			
Mo6-020	2.393(3)	06–Mo2–O8	97.71(15)			
Mo6-021	1.945(3)	015–Mo3–O20	73.74(12)			
Mo6-022	1.691(3)	06–Mo2–O9	105.73(18)			
Mo6–027	2.127(3)	014–Mo4–O16	102.13(15)			
Mo6–O28	1.973(3)	06-Mo2-011	172.14(14)			
Mo7–021	2.006(3)	014–Mo4–O17	99.64(15)			
Mo7–O23	1.710(4)	06–Mo2–N4	93.63(15)			
Mo7–024	1.708(3)	014–Mo4–O20	77.05(12)			
Mo7-025	2.302(3)	07–Mo2–O8	148.28(14)			
Mo7-026	1.885(3)	014–Mo4–O21	83.48(13)			
Mo7-027	2.340(3)	07–Mo2–O9	104.04(17)			
Mo8-027	2.297(3)	014-M04-025	146.56(14)			
Mo8-028	2.016(3)	07–Mo2–011	82.30(13)			
Mo8-029	2.381(3)	016-M04-017	105.36(19)			
Mo8-032	1.701(3)	07–Mo2–N4	80.74(14)			
M011-N/	2.215(4)	016-M04-020	161.33(15)			
Mi08-033	1.893(3)	016 Mat 021	90.95(15)			
IVI08-035	1./01(4)		89.04(15)			
M09-020	2.1/4(3)		//.64(12)			
M09-025	1.958(3)	016-M04-025	100.03(15)			
IVI09-027	2.303(3)		/1.52(13)			
M09-029	1.949(3)	01/-M04-020	93.09(16)			
M09-030	1./43(3)	09-M02-011	81.27(16)			
M09-031	1.694(3)	017-M04-021	164.11(16)			
IVI010-026	1.920(3)	U1/-W04-U25	98.25(15)			

Mo10–027	2.517(3)	O21–Mo6–O22	101.86(15)
Mo10-030	2.288(3)	020-Mo4-021	72.31(11)
Mo11-038	2.013(3)	O21–Mo6–O27	78.97(13)
Mo11-039	1.682(4)	O20–Mo4–O25	73.98(12)
Mo11-037	1,920(4)	021–Mo6–028	149.60(13)
Mo10-033	1.907(3)	015-Mo5-018	101.94(15)
Mo10-034	1 703(4)	022-Mo6-028	101 75(14)
Mo10-036	1 712(3)	015-Mo5-019	98 57(15)
1010-030	1.712(5)	013-M05-013	78 61(12)
		015-Mo5-020	77 41(12)
		013-M03-020	77.41(12) 06.10(15)
		015 Mar 028	90.10(13)
		015-1005-028	81.60(12)
		021-1007-024	99.82(15)
		015-M05-029	146.66(14)
		021-1007-025	/1.93(12)
		018–M05–019	105.38(16)
		021–Mo7–026	146.44(14)
		018–Mo5–O20	95.63(13)
		021–Mo7–O27	72.82(12)
		018–Mo5–O28	166.59(14)
		023–Mo7–O24	104.72(16)
		O18–Mo5–O29	99.28(15)
		O23–Mo7–O25	162.37(14)
		O19–Mo5–O20	158.99(14)
		O23–Mo7–O26	101.75(15)
		019–Mo5–O28	86.68(14)
		023–Mo7–O27	92.26(13)
		019–Mo5–O29	100.24(15)
		024–Mo7–O25	90.35(14)
		O20–Mo5–O28	72.35(11)
		O24–Mo7–O26	102.74(15)
		O20–Mo5–O29	75.16(12)
		O24–Mo7–O27	162.26(14)
		O28–Mo5–O29	72.32(12)
		O25-Mo7-O26	83.36(13)
		013-Mo6-020	80.34(13)
		025-M07-027	72 09(11)
		013-M00-020 025-M07-027 013-M06-021	72.09(11)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027	72.09(11) 96.85(14) 78.26(12)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022	72.09(11) 96.85(14) 78.26(12) 105.25(16)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(12)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-029 013-M06-029	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-022	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-032 020-M06-021	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.32(12)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027 M08-032	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-033	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12)
		013-m06-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-022	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14)
		013-m06-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.3(14)
		013-m06-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-028 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-032 027-M08-033 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12)
		013-m06-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027 028-M08-029 020-M06-028	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 77.30(12)
		013-m06-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027 028-M08-029 020-M06-028 020-M06-027 028-M08-032	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 77.30(12) 100.19(15)
		013-m06-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027 028-M08-029 020-M06-023 028-M08-033	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 100.19(15) 147.39(14)
		013-m06-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-021 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027 028-M08-029 020-M06-028 028-M08-032 028-M08-033 027-M010-030	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 77.30(12) 100.19(15) 147.39(14) 68.74(10)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-021 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027 028-M08-029 020-M06-028 028-M08-032 028-M08-033 027-M010-030 028-M08-035	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 77.30(12) 100.19(15) 147.39(14) 68.74(10) 97.13(15)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-021 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027 028-M08-029 020-M06-028 028-M08-032 028-M08-033 027-M010-030 028-M08-035 027-M010-033	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 77.30(12) 100.19(15) 147.39(14) 68.74(10) 97.13(15) 71.96(12)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-029 013-M06-028 027-M08-032 020-M06-021 027-M08-033 020-M06-022 027-M08-035 020-M06-027 028-M08-035 028-M08-032 028-M08-033 027-M010-030 028-M08-035 027-M010-033 027-M010-033 029-M08-032	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 77.30(12) 100.19(15) 147.39(14) 68.74(10) 97.13(15) 71.96(12) 86.64(15)
		013-M00-020 025-M07-027 013-M06-021 026-M07-027 013-M06-022 027-M08-028 013-M06-027 027-M08-029 013-M06-028 027-M08-032 027-M08-033 020-M06-021 027-M08-033 020-M06-022 027-M08-033 020-M06-027 028-M08-035 020-M06-028 028-M08-032 028-M08-033 027-M010-030 028-M08-035 027-M010-033 027-M010-034	72.09(11) 96.85(14) 78.26(12) 105.25(16) 73.82(12) 155.58(13) 70.88(11) 95.13(14) 157.51(15) 77.33(12) 77.64(12) 174.41(14) 97.23(16) 75.27(11) 71.49(12) 77.30(12) 100.19(15) 147.39(14) 68.74(10) 97.13(15) 71.96(12) 86.64(15) 94.93(13)

	027–Mo10–O36	159.58(13)
	O29–Mo8–O35	165.20(16)
	O30–Mo10–O33	78.32(13)
	O32–Mo8–O35	105.09(19)
	O30–Mo10–O36	91.00(14)
	O33–Mo8–O35	101.82(16)
	O33-Mo10-O34	98.54(18)
	O20–Mo9–O25	78.56(12)
	O33-Mo10-O36	102.30(15)
	O20–Mo9–O27	75.06(11)
	O34–Mo10–O36	105.37(16)
	O20–Mo9–O29	78.07(13)
	O38-Mo11-O39	98.63(16)
	O20–Mo9–O30	156.46(13)
	O38-Mo11-O40	95.42(15)
	O20-Mo9-O31	97.66(14)
	O38-Mo11-N7	71.92(13)
	O25–Mo9–O27	77.79(12)
	O37-Mo11-O38	148.53(14)
	O25–Mo9–O29	149.42(13)
	O37-Mo11-O39	101.41(17)
	O25–Mo9–O30	97.54(14)
	O37-Mo11-O40	101.57(17)
	O25–Mo9–O31	101.22(15)
	O37–Mo11–N7	80.78(14)
	027–Mo9–O29	77.33(12)
	O39–Mo11–O40	106.95(19)
	O27–Mo9–O30	81.43(13)
	O39-Mo11-N7	100.27(16)
	027–Mo9–O31	172.71(14)
	040-Mo11-N7	151.50(16)
	O29–Mo9–O30	96.05(14)
	Mo1–O1 –C2	138.7(4)
	O29–Mo9–O31	101.20(15)
	Mo1–O2 –C8	119.5(3)
	O30–Mo9–O31	105.86(16)
	O26-Mo10-O33	142.59(14)
	026–Mo10–O27	73.24(12)
	026–Mo10–O30	76.67(13)
	Mo1–O6 –Mo2	165.57(19)
	Mo2–O7 –C16	132.3(3)

	D-H···A	Symmetry code	<i>d</i> (D–H)	<i>d</i> (H…A)	<i>d</i> (D…A)	∠(D−H…A)
	N3-H3…O7		0.88	1.83	2.644(8)	152
	C11-H11…O14	1-x,1-y,-z	0.95	2.38	3.291(7)	160
1H ^a ·2CH ₃ COCH ₃	C13-H13…O4	1-x,1-y,1-z	0.95	2.32	3.258(7)	169
	C14-H14B…O16	x,1+y,1+z	0.98	2.60	3.559(11)	167
	C17-H17A…O1	-x,1-y,1-z	0.98	2.51	3.474(8)	170
	C19-H19B…O16	x,1+y,z	0.98	2.51	3.39(3)	150
	C21-H21B…O16	x,1+y,z	0.98	2.53	3.411(17)	149
	N3-H3…O7	-1+x,-1+y,z	0.85(5)	1.99(5)	2.820(7)	168(5)
	06-H6A…07	x,-1+y,z	0.81(5)	2.06(5)	2.827(6)	158(6)
	O6-H6B…O17	-1+x,-1+y,z	0.81(3)	2.01(3)	2.824(5)	178(8)
	C5-H5…O14		0.95	2.56	3.452(7)	157
	C6-H6…O10		0.95	2.36	3.173(6)	143
2H ^w ·2CH₃COCH₃	C10-H10…O4	-1+x,-1+y,z	0.95	2.38	3.138(6)	136
	C11-H11…O8	-x,-y,-z	0.95	2.53	3.404(8)	153
	C14-H14A…O3	1+x,y,z	0.98	2.52	3.338(8)	141
	C15-H15C…O13		0.98	2.52	3.309(10)	137
	C17-H17C…O14	-1+x,y,z	0.98	2.51	3.439(8)	159
	N3-H3A…O7		0.88	1.99	2.857(12)	169
	O6-H6A…N2	1-x,1-y,1-z	0.87	2.02	2.853(7)	160
3H ^w ·2CH₃COCH₃	O6-H6B…O8		0.87	2.01	2.868(8)	168
	C7-H7…O15	-1+x,-1+y,z	0.95	2.38	3.288(8)	160
	C11-H11…O7	1-x,-y,-z	0.95	2.35	3.234(12)	154
	C12-H12…O4	2-x,1-y,1-z	0.95	2.06	2.955(12)	157
	C13-H13…O17	2-x,2-y,1-z	0.95	2.49	3.172(9)	129
	C15-H15A…O3	1-x,-y,1-z	0.98	2.40	3.327(12)	157
	C15-H15B…O8	1-x,1-y,1-z	0.98	2.55	3.464(13)	155
	C17-H17C…O4	-1+x,-1+y,-1+z	0.98	2.56	3.433(11)	148
	N3-H3…O3	-x,1/2+y,3/2-z	0.85(5)	2.39(5)	3.063(4)	136(4)
	N3-H3…O13	x,1/2-y,1/2+z	0.85(5)	2.58(5)	3.032(4)	114(4)
1H ^w	06-H6A…N2	1-x,-1/2+y,3/2-z	0.81(4)	2.11(4)	2.906(4)	169(4)
	O6-H6B…O5	1-x,1/2+y,3/2-z	0.81(4)	2.13(4)	2.867(3)	152(4)
	O6-H6B…O7	1-x,1/2+y,3/2-z	0.81(4)	2.54(4)	3.057(4)	123(3)
	C11-H11…O15	x,3/2-y,1/2+z	0.83(5)	2.24(4)	3.068(5)	175(3)
	C12-H12…O4	x,1+y,z	0.95	2.38	3.081(4)	131
	C12-H12…O14	x,3/2-y,1/2+z	0.95	2.59	3.347(5)	136
	C14-H14C…O13	1-x,-y,1-z	0.98	2.40	3.364(4)	166

Table S3. Geometry of intermolecular hydrogen bonds (Å, °) for compounds: 1H^a·2CH₃COCH₃, 2H^w·2CH₃COCH₃, 3H^w·2CH₃COCH₃ and 1H^w

	D-H…A	Symmetry code	<i>d</i> (D–H)	<i>d</i> (H…A)	<i>d</i> (D…A)	∠(D−H…A)
	N3-H3…O4	1-x,-y,-z	0.80(3)	2.11(3)	2.790(6)	142(5)
1H	C4-H4…O9	2-x,1-y,1-z	0.93	2.44	3.331(7)	161
	C7-H7…O13	1-x,1-y,1-z	0.93	2.25	3.129(7)	158
	C12-H12…O3	-1+x,y,z	0.93	2.41	3.149(8)	137
	N3-H3…O4	x,-1+y,z	0.88	2.05	2.768(12)	138
	N3-H3…O11	1-x,-y,2-z	0.88	2.37	3.094(12)	140
2H	C7-H7…O3	2-x,1-y,1-z	0.95	2.33	3.034(12)	131
	C11-H11…O7	1+x,-1+y,z	0.95	2.60	3.388(14)	141
	C12-H12…O15	2-x,1-y,2-z	0.95	2.42	3.338(12)	163
	C13-H13…O8	1+x,y,z	0.95	2.18	2.984(12)	142
	N6–H6…22	1-x,1-y,1-z	0.88	2.59	3.174(5)	124
	N3–H3…O28	1+x,y,z	0.88	2.	2.846(6)	162
	N6–H6…O23	1-x,1-y,1-z	0.88	2.03	2.845(6)	154
	N9–H9…O16	-1+x,y,z	0.88	2.13	2.855(5)	139
	N9–H9…O24	-1+x,y,z	0.88	2.34	2.936(5)	125
	042–H42D…012	1-x,1-y,-z	0.87	2.32	3.042(6)	141
	042–H42D…018	1-x,1-y,-z	0.87	2.35	2.912(6)	123
	042–H42E…017		0.87	2.17	3.021(6)	166
	C3–H3A …O3	2-x,-y,-z	0.95	2.56	3.5(8)	170
	C10–H10 …O15	1+x,y,z	0.95	2.52	3.121(6)	121
$20 \cdot CH_3CN \cdot H_2O$	C11–H11 …O35	1-x,1-y,1-z	0.95	2.54	3.128(7)	121
	C12–H12 …O34	1-x,1-y,1-z	0.95	2.53	3.153(7)	123
	C19–H19 …O30	x,-1+y,z	0.95	2.40	3.315(6)	163
	C20–H20 …N10B	1-x,-y,1-z	0.95	2.61	3.54(2)	168
	C25–H25 …O22	1-x,1-y,1-z	0.95	2.50	3.138(6)	125
	C26–H26 …O32	1+x,y,z	0.95	2.17	3.021(6)	149
	C33–H33 …O13	x,1+y,z	0.95	2.45	3.387(6)	170
	C35–H35 …O3	-1+x,1+y,z	0.95	2.36	3.133(6)	138
	C39–H39 …N11A	1-x,-y,-z	0.95	2.52	3.46(3)	169
	C40–H40 …O4	1-x,1-y,-z	0.95	2.50	3.197(7)	130
	C45B–H45A…O15	1-x,-y,-z	0.98	2.54	3.273(19)	131
	C45B H45B…O4	2-x,-y,-z	0.98	2.56	3.28(2)	130
	N3-H3…O4	x,1+y,z	0.88	2.16	2.818(10)	131
	N3-H3…O15	1-x,2-y,2-z	0.88	2.20	2.979(10)	147
3H	C3-H3A…O3	1-x,-y,1-z	0.95	2.59	3.445(11)	149
	C7-H7···O3	1-x,1-y,1-z	0.95	2.54	3.278(10)	135
	С7-Н7…О5	-x,1-y,1-z	0.95	2.59	3.310(10)	133
	C10-H10····O4	x,1+y,z	0.95	2.59	3.041(11)	109
	C11-H1108	1+X,1+Y,Z	0.95	2.49	3.228(12)	135
	C12-H12-013	1+X,Y,Z	0.95	2.56	3.470(10)	161
	C12-H12-011	∠-x,∠-y,∠-z	0.95	2.57	3.218(11)	126
	$C13 - H13 \cdots O12$	1+x,y,Z	0.95	2.35	3.162(10)	143
	C14-H14A…U8	-x,-y,1-Z	0.98	2.45	3.378(10)	157
	N3-H3…N4	11	0.88	2.61	3.178(6)	123
611 0.011 011	N3-H3···O4	1-X, 1-Y, 1-Z	0.88	1.97	2.720(5)	143
3H ·2CH₃CN	С/-Н7…012	1+x,-1+y,z	0.95	2.40	3.319(5)	163
	C11-H11…N4		0.95	2.49	3.123(7)	124

Table S4. Geometry of intermolecular hydrogen bonds (Å, °) for compounds: **1H**, **2H**, **2O**·CH₃CN·H₂O, **3H** and **3H**·2CH₃CN

C14-H14B…O14	1-x,-y,-z	0.98	2.54	3.297(5)	134
C14-H14C…O15	1+x,y,-1+z	0.98	2.48	3.348(6)	147
C16-H16B…O9	x,y,1+z	0.98	2.52	3.390(9)	149
C16-H16C…O3	-1+x,y,1+z	0.98	2.47	3.354(9)	150

Identification code	1H ^a ·2CH ₃ COCH ₃	2H ^w ·2CH₃COCH₃	3H ^w ·2CH₃COCH₃	1H ^w
Empirical formula	C ₄₀ H ₄₈ Mo ₈ N ₆ O ₃₃	C ₃₄ H ₄₀ Mo ₈ N ₆ O ₃₃	C ₃₄ H ₄₀ Mo ₈ N ₆ O ₃₃	C ₅₆ H ₅₆ Mo ₁₆ N ₁₂ O ₆₂
Formula weight	1908.36	1828.24	1828.24	3424.16
Temperature/K	169.99	150.0	169.99(10)	150
Crystal system	triclinic	triclinic	triclinic	monoclinic
Space group	P-1	P-1	P-1	P21/c
a/Å	8.9721(3)	10.1475(4)	10.6083(8)	11.2569(3)
b/Å	10.7368(2)	10.3331(5)	10.7813(6)	9.2706(2)
c/Å	16.4964(4)	14.6331(5)	12.8485(6)	21.2974(5)
α/°	104.858(2)	108.527(4)	106.660(5)	90
β/°	104.620(2)	92.219(3)	106.352(6)	103.717(2)
γ/°	94.020(2)	110.565(4)	99.224(5)	90
Volume/Å ³	1470.73(7)	1342.45(11)	1303.61(15)	2159.17(9)
Z	1	1	1	1
ρcalcg/cm ³	2.155	2.261	2.329	2.633
µ/mm ⁻¹	14.380	1.907	16.182	2.359
F(0)	930.0	886.0	886.0	1644.0
Crystal size/mm ³	0.204 × 0.089 × 0.2	$0.1 \times 0.04 \times 0.03$	$0.12 \times 0.09 \times 0.05$	$0.11 \times 0.08 \times 0.07$
Radiation	CuKα (λ = 1.54184)	ΜοΚα (λ = 0.71073)	CuKα (λ = 1.54184)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.774 to 161.044	7.954 to 58	7.656 to 160.62	8.654 to 65.854
Index ranges	$-10 \le h \le 11, -13 \le k \le 13, -20$ $\le l \le 20$	-13 ≤ h ≤ 13, -14 ≤ k ≤ 13, -19 ≤ l ≤ 19	-12 ≤ h ≤ 13, -13 ≤ k ≤ 11, -16 ≤ l ≤ 16	-16 ≤ h ≤ 12, -11 ≤ k ≤ 14, -30 ≤ l ≤ 32
Reflections collected	18183	17550	17776	15865
Independent reflections	6056 [R _{int} = 0.0485, R _{sigma} = 0.0478]	7018 [R _{int} = 0.0540, R _{sigma} = 0.0874]	5531 [R _{int} = 0.0926, R _{sigma} = 0.0792]	7131 [R _{int} = 0.0292, R _{sigma} = 0.0451]
Data/restraints/parameters	6056/1/410	7018/3/376	5531/1/374	7131/3/348
Goodness-of-fit on F ²	1.069	0.962	1.050	1.060
Final R indexes [I>=2σ (I)]	R ₁ = 0.0453, wR ₂ = 0.1229	R ₁ = 0.0517, wR ₂ = 0.0789	R ₁ = 0.0634, wR ₂ = 0.1747	R ₁ = 0.0347, wR ₂ = 0.0709
Final R indexes [all data]	R ₁ = 0.0477, wR ₂ = 0.1252	R ₁ = 0.1054, wR ₂ = 0.0898	R ₁ = 0.0673, wR ₂ = 0.1820	$R_1 = 0.05$, $wR_2 = 0.0793$
Largest diff. peak/hole / e Å ⁻³	2.39/-2.46	0.78/-0.57	2.06/-2.04	0.88/-0.87

Table S5. Crystallographic data and structure refinement data for compounds: 1H^a·2CH₃COCH₃, 2H^w·2CH₃COCH₃, 3H^w·2CH₃COCH₃, and 1H^w

Identification code	1H	2H	20 ·CH ₃ CN·H ₂ O	3H	3H ·2CH₃CN
Empirical formula	C ₂₈ H ₂₄ Mo ₈ N ₆ O ₂₉	$C_{28}H_{24}Mo_8N_6O_{29}$	C ₄₆ H ₄₂ Mo ₁₁ N ₁₁ O ₄₂	$C_{28}H_{24}Mo_8N_6O_{29}$	C ₃₂ H ₃₀ Mo ₈ N ₈ O ₂₉
Formula weight	1676.05	1676.05	2476.24	1676.05	1758.16
Temperature/K	150(2)	170	170	169.99(10)	169.99(10)
Crystal system	triclinic	triclinic	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1	P-1	P-1
a/Å	10.0670(6)	8.8506(5)	10.83910(10)	8.8403(2)	10.02310(10)
b/Å	10.0808(6)	9.2538(5)	17.04750(10)	9.1695(2)	10.7273(3)
c/Å	11.2764(7)	14.0175(8)	18.70750(10)	14.0494(3)	12.9277(3)
α/°	90.460(5)	74.262(5)	88.5840(10)	106.381(2)	73.422(2)
β/°	92.740(5)	72.168(5)	84.1140(10)	105.966(2)	72.752(2)
γ/°	108.443(5)	88.125(4)	88.5150(10)	93.753(2)	66.204(2)
Volume/Å ³	1084.03(12)	1050.34(11)	3436.54(4)	1037.78(4)	1192.60(5)
Z	1	1	2	1	1
pcalcg/cm ³	2.567	2.650	2.393	2.682	2.448
µ/mm ⁻¹	2.343	19.916	16.844	20.157	17.6
F(000)	802.0	802.0	2386.0	802.0	846.0
Crystal size/mm ³	$0.23 \times 0.17 \times 0.08$	$0.09 \times 0.04 \times 0.01$	$0.123 \times 0.083 \times 0.073$	$0.097 \times 0.038 \times 0.022$	$0.166 \times 0.094 \times 0.031$
Radiation	ΜοΚα (λ = 0.71073)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)	CuKα (λ = 1.54184)
20 range for data collection/°	8.208 to 66.4	6.888 to 160.024	6.956 to 160.79	10.178 to 156.2	7.292 to 155.422
Index ranges	-14 ≤ h ≤ 15, -15 ≤ k ≤ 14, -15 ≤ l ≤ 17	-11 ≤ h ≤ 11, -11 ≤ k ≤ 11, -17 ≤ l ≤ 17	-13 ≤ h ≤ 13, -21 ≤ k ≤ 21, -23 ≤ ≤ 23	-11 ≤ h ≤ 8, -11 ≤ k ≤ 11, - 17 ≤ l ≤ 17	-9 ≤ h ≤ 12, -13 ≤ k ≤ 13, -16 ≤ l ≤ 16
Reflections collected	15537	13693	136522	14341	17780
Independent reflections	7115 [R _{int} = 0.0815, R _{sigma} = 0.1572]	4450 [R _{int} = 0.0635, R _{sigma} = 0.0534]	14751 [R _{int} = 0.0499, R _{sigma} = 0.0242]	4320 [R _{int} = 0.0590, R _{sigma} = 0.0529]	4996 [R _{int} = 0.0608, R _{sigma} = 0.0533]
Data/restraints/parameters	7115/1/326	4450/0/323	14751/58/1024	4320/0/323	4996/0/352
Goodness-of-fit on F ²	0.934	1.128	1.082	1.172	1.047
Final R indexes [I>=2 σ (I)]	R ₁ = 0.0598, wR ₂ = 0.0615	R ₁ = 0.0829, wR ₂ = 0.2175	$R_1 = 0.0389$, $wR_2 = 0.1029$	R ₁ = 0.0802, wR ₂ = 0.1975	R ₁ = 0.0360, wR ₂ = 0.0942
Final R indexes [all data]	R ₁ = 0.1312, wR ₂ = 0.0737	R ₁ = 0.0844, wR ₂ = 0.2197	R ₁ = 0.0436, wR ₂ = 0.1058	R ₁ = 0.0818, wR ₂ = 0.22	R ₁ = 0.0386, wR ₂ = 0.0968
Largest diff. peak/hole / e Å ⁻³	1.17/-1.14	2.57/-0.94	1.51/-1.81	2.55/-1.14	1.48/-1.26

Table S6. Crystallographic data and structure refinement data for compounds: 1H, 2H, 2O·CH₃CN·H₂O, 3H, and 3H·2CH₃CN

Figure S2. TG curves of (a) 1H^a, (b) 2H^w·2CH₃COCH₃, and (c) 3H^w·2CH₃COCH₃

Figure S3. TG curves of (a) 1H^w, (b) 2O, and (c) 3H·2MeCN.

(b)

Figure S4. TG curves of (a) 1H, (b) 2H, and (c) 3H.

5. Catalytic studies

Figure S5. Catalytic profiles for all the catalyst with TBHP in decane as an oxidant: **1H**^a (light blue), **1H**^w (orange), **1H** (purple), **2H**^w·2CH₃COCH₃ (grey), **3H**^w·2CH₃COCH₃ (yellow), **3H**·2MeCN (dark blue), **3H**(brown)

Catalyst	Catalyst loading %	Con/%	Sel/	TOF _{20min}	TON	Reference
	/Oxidans		%			
[MoO ₂ (L)] _n	0.25 TBHP (aq)	36	45	116	151	ref 51. Cryst. Growth Des.
$[MoO_2(L^1)]_n$		27	56	72	113	2019 , 19, 3000–3011
$[MoO_2(L^2)]_n$		49	67	119	192	
MoO ₂ (L ²)] ₄		78	85	151	204	
[MoO ₂ (L)] _n	0.25	66	78	225	273	
$MoO_2(L^1)]_n$	TBHP (dec)	74	85	200	305	
$[MoO_2(L^2)]_n$		79	87	221	324	
$[MoO_2(L^2)]_4$		99	94	1152	397	
[MoO ₂ (L ³)] _n	0.25 TBHP (aq)	90	84	91	360	ref. 26. Int. J. Mol. Sci. 2024, 25(3), 1503.

Table S7. Relevant catalytic results for the cyclooctene epoxidation. Reaction conditions: tim	e, 6
h; temperature, 80 °C.	