Supplementary material

Ti₃C₂T_x-AuNP based paper substrates for label-free SERS detection

of bacteria and multimodal antibacterials

Boya Shi,^a Li Jiang,^{*a} Ruikai Ma,^a Weidan Zhao,^a Yekai Zheng,^a Wangwei Pan,^a Mi Liu,^a Shangzhong Jin^a and Yan Zhou^{*b}

^a College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China. Email: lijiang@cjlu.edu.cn

^{b.} Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of

Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China. Email: zhouyan@wmu.edu.cn

Figure. S1 Antibacterial activities in aqueous suspensions without laser after 5 h: bacterial suspensions with cellulose paper soaked in NaCl solution (0.9%) were used as control. Photographs of agar plates onto which E. coli and MRSA bacterial cells were recultivated after treatment with cellulose paper soaked in 200 μ g/mL to 800 μ g/mL Ti₃C₂T_x-AuNP nanocomposite, Ti₃C₂T_x and AuNP, respectively.

Figure. S2 SEM images of the E. coli (b) and MRSA (d) treated with cellulose paper soaked in $600 \ \mu g/mL$ of $Ti_3C_2T_x$ -AuNP. Control bacterial cells (a, c).

Figure. S3 Temperature changes of dry cellulose paper soaked in 600 μ g/mL Ti₃C₂T_x -AuNP nanocomposite with a series of power densities of 808 nm laser irradiation.

Figure. S4 Temperature changes after NIR irradiation (808 nm, 300 mW/cm²) for 20s with various materials and different concentrations of $Ti_3C_2T_x$ -AuNP.

Figure. S5 Thermal imaging after NIR irradiation (808 nm, 300 mW/cm²) for 20s with various materials and different concentrations of $Ti_3C_2T_x$ -AuNP.

Figure. S6 Photothermal heating curves of dry cellulose paper soaked in 600 μ g/mL Ti₃C₂T_x - AuNP nanocomposite for five cycles under laser on/off cycles with NIR laser (808 nm, 300 mW/cm²) irradiation.

Figure. S7 Raman spectra of qualitative filter paper and 3mm cellulose chromatography filter paper.

Figure. S8 SERS detection of MRSA in porcine skin

Figure. S9 SERS detection of MRSA in porcine serum.

Table S1	Direct SERS	detection	of bacteria
1001001	DILCOUDENCO	4666666	

Materials	substrate	Limit of Detection	Ref.
Ag@TiO ₂ electrospinning nanofibrous	TiO ₂ nanofibers	E. coli is 10 ⁸ CFU/mL	1
Au-TPP	ТРР	E. coli is 10 ⁸ CFU/mL; S. aureus is 10 ⁸ CFU/mL	2
Paper substrate of Ti ₃ C ₂ T _x - AuNP	Paper	E. coli is 10 ⁵ CFU/mL; MRSA is 5×10 ⁵ CFU/mL	This work

Table S2 Antibacterial activity of materials

Materials	Laser	Power	Time	Bacterial Survival Rate	Ref.
PDEGMA	/	/	24 h	S. aureus is about 10%	3
CS hydrogel	/	/	24 h	E. coli is 26.35%	4
				MRSA is 35.49%	
AuNst ₁₂₀	/	/	8 h	S. aureus is 40%	5
CuS@GDY	808 nm	400	10 min	E. coli is about 0.01%	6
		mW/cm ²		S. aureus is about 0.01%	
PDA-	808 nm	m 2 W/cm ²	10 min	E. coli is about 7.06%	7
PAM/Mg ²⁺ gel				S. aureus is about 5.29%	
Paper substrate	808 nm	300 n 5 min mW/cm ²	E. coli is about 0.06%	This work	
of Ti ₃ C ₂ T _x -AuNP			5 11111	MRSA is 7.19%	THIS WOLK

References

- 1. Y. Yang, Z. J. Zhang, Y. L. He, Z. H. Wang, Y. B. Zhao and L. Sun, *Sens. Actuator B-Chem.*, 2018, **273**, 600-609.
- H. M. Zhao, D. W. Zheng, H. Q. Wang, T. F. Lin, W. Liu, X. L. Wang, W. J. Lu, M. J. Liu, W. B. Liu, Y. M. Zhang, M. D. Liu and P. Zhang, *Int. J. Mol. Sci.*, 2022, 23, 13.
- 3. H. Choi, A. Schulte, M. Müller, M. Park, S. W. Jo and H. Schönherr, *Adv. Healthc. Mater.*, 2021, **10**, 12.
- W. S. Liu, R. Gao, C. F. Yang, Z. J. Feng, W. B. Ou-Yang, X. B. Pan, P. S. Huang, C. N. Zhang, D. L. Kong and W. W. Wang, *Sci. Adv.*, 2022, 8, 13.
- 5. S. Kaul, P. Sagar, R. Gupta, P. Garg, N. Priyadarshi and N. K. Singhal, *ACS Appl. Mater*. *Interfaces*, 2022, **14**, 44084–44097.
- Q. Bai, M. M. Liang, W. L. Wu, C. H. Zhang, X. Li, M. H. Liu, D. Q. Yang, L. Yu, Q. Z. Hu,
 L. N. Wang, F. L. Du, N. Sui and Z. L. Zhu, *Adv. Funct. Mater.*, 2022, **32**, 14.
- Z. Y. Guo, Z. Z. Zhang, N. Zhang, W. X. Gao, J. Li, Y. J. Pu, B. He and J. Xie, *Bioact. Mater.*, 2022, 15, 203-213.