Supplementary Information

The positional and numerical effect of N⁶-methyladenosine in tracrRNA on

the DNA cleavage activity of Cas9

Binh Thanh Tran^{a,†}, Seulgi Go^{a,†}, Kyoung-Ran Kim^{a,†}, Hak Suk Chung^{a,b}, Dae-Ro Ahn^{a,b,*}

^aChemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea ^bDivision of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea

[†]These authors contribute equally

*Corresponding author (E-mail: drahn@kist.re.kr)

Materials and methods

Materials

RNA phosphoramidites for natural sequences, controlled pore glass (CPG), and the chemicals used for solid phase oligonucleotide synthesis were purchased from Sigma-Aldrich (USA). N^6 methyladenosine phosphoramidite and the 5'-phosphate amidite were purchased from Glen Research (USA). The crRNA strand was purchased from Integrated DNA Technologies (USA). K562 cells were kindly provided by Dr. Gayeong Lim in Korea Institute of Science and Technology (KIST). HEK293 cells were obtained from the Korean Cell Line Bank (Seoul, Republic of Korea).

Synthesis of tracrRNAs

Head (42-mer) strands and 5'-phosphorylated tail (41-mer) strands were synthesized at 1 μ mol scale by standard protocols for solid phase oligonucleotide synthesis using MerMade 4 DNA/RNA synthesizer (BioAutomation, USA). The RNA oligonucleotides were cleaved from CPG and deprotected by incubation in a mixture of 30% ammonia and ethanol (3:1) at 55°C for 16 h. After the solvents were removed by a rotary evaporator, the residue was suspended in 1 M tetrabutylammonium fluoride in tetrahydrofuran (Sigma-Aldrich, USA) and incubated at 25°C for 24 h. After removing the solvent, the residue was finally purified by 10% denaturing polyacrylamide gel electrophoresis (PAGE) following the reported protocol [1]. For enzymatic ligation, the reaction mixture (20 μ L) containing head (1 μ L, 20 μ M) strands, tail strands (2 μ L, 20 μ M), T4 RNA Ligase 1 (1 μ L, New England Biolabs, USA), ATP (1 μ L, 1 mM, Thermo Fisher Scientific, USA), 15% PEG8000 (6 μ L), and RNase Inhibitor (0.5 μ L, New England Biolabs, USA) in the reaction buffer provided by the manufacturer were incubated at 37°C for 16 h.

TracrRNAs were purified as ligation products by 10% denaturing PAGE of the reaction mixture by following the reported protocol [1] (Fig. S1). The head and tail sequences used for synthesis of tracrRNAs containing m6As are presented in Table S1.

Expression and purification of Cas9.

pET-NLS-Cas9-6xHis was purchased from Addgene (plasmid #62934, USA). Recombinant Cas9 was expressed and purified as previously described [2].

In vitro DNA cleavage reactions

The DNA plasmid pSMART-EGFP [3] was used as the substrate after linearization with Pvu I (New England Biolabs, USA) for the *in vitro* DNA cleavage experiments (Table S2). Cas9 (33 nM), linearized pSMART-EGFP (1 nM), and crRNA (33 nM, Table S2), tracrRNA (33 nM) were incubated in the reaction buffer (20 mM HEPES, pH6.5, 100 mM NaCl, 5 mM MgCl₂, 0.1 mM EDTA, 30 µL) at 37 °C for 60 min. The reaction was quenched by adding 6x gel loading buffer (19.8 mM Tris-HCl, pH 8.0, 66 mM EDTA, 0.017% SDS, 2.5% Ficoll®-400, 0.015% bromophenol blue, New England Biolabs, USA) and subsequently analyzed using 0.8% agarose gel electrophoresis. The gel was stained with SYBR[™] Gold (Thermo Fisher Scientific, USA) and imaged using the iBright[™] FL1000 (Thermo Fisher Scientific, USA). Band intensities of cleavage products and the substrate were quantified using ImageJ software (National Institutes of Health, USA). The cleavage efficiency (%) was calculated by 100 x (total band intensity of cleavage products)/[(total band intensity of cleavage products) + (band intensity of the substrate)]. All data were obtained by three independent experiments.

The k_{obs} values were estimated by curve-fitting of graph showing time dependent-cleavage efficiency of UM, HM, TM or FM (in Fig. 2c). For curve fitting, the Origin software ExpDecay1 model was used, and the values were derived using the formula

$$y = y0 + A1 * exp^{(0)}\left(\frac{-(x-x0)}{t1}\right)$$

where y0 is the offset, x0 is the center, A1 is the amplitude, and t1 is the time constant. The values obtained from three independent experiments for each sample are shown as mean±S.D. in the graph in Figure 2d.

Cellular gene disruption experiments

K562 and HEK293 cells were maintained in RPMI 1640 medium (Welgene, Gyeongsan, Korea) and Dulbecco's Modified Eagle Medium (DMEM) (Welgene), respectively. Both media were supplemented with 10% fetal bovine serum (FBS) (Welgene) and 1% penicillin-streptomycin (Welgene). The cells were incubated at 37°C in a humidified atmosphere containing 95% air and 5% CO₂.

To achieve cell transfection, 1 x 10^5 cells were harvested, washed with phosphate-buffered saline (PBS), resuspended in Neon Electroporation Buffer R (50 µL, Thermo Fisher Scientific), and mixed with RNP complexes (1 µg Cas9, 125 ng crRNA, 125 ng tracrRNA for HEK293 cells; 2 µg Cas9, 250 ng crRNA, 250 ng tracrRNA for K562 cells) in the buffer (50 µL). Cells in the mixture were subjected to electroporation at 1150 V with two pulses of 20 ms (HEK293 cells) or 1700 V with one pulse of 20 ms (K562 cells) using 100 µL Neon tip. After electroporation, cells were seeded into 12-well plates. HEK293 cells were incubated for 48 h, while K562 cells were incubated for 72 h.

Genomic DNA was extracted using the MagListoTM 5M Genomic DNA Extraction Kit (Bioneer, Daejeon, Korea), according to the manufacturer's instructions. The amplicons of the target loci were prepared by polymerase chain reaction (PCR) amplification of genomic DNA using Speed-Pfu Polymerase (NanoHelix, Daejeon, Korea) and following primers for the indicated genes: *RUNX1*: Forward 5'-TTAATAGGGCTTGGGGAGTC-3', Reverse 5'-CTGCCATTTCATTACA GGC-3', *EMX1*: Forward 5'-AGCTCAGCCTGAGTGTTG-3', Reverse 5'-TCGTGGGTTTGTG GTTG-3', *HEK3*: Forward 5'-AGACAGGGATCCCAGGGAAA-3', Reverse 5'- GAGCTGCAC ATACTAGCCCC-3'. Amplicons of the target loci were sequenced using the Sanger sequencing method by Macrogen (Seoul, Korea). The sequencing data were analyzed by the Tracking of Indels by DEcomposition (TIDE) method [4], to estimate indel efficiency. The indel frequencies shown in Fig. 5 were obtained by subtraction of the indel frequency of the control cells (electroporation only) from the indel frequency of each RNP-treated cells.

CrRNA (5' to 3')				
	GGAGCO	GCACCATCTTCTTCAGUUUUAGAGCUAUGCUGUUUUG		
TracrRNA	Sequences (5' to 3')			
UM	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU		
OW	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU		
FM	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU		
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU		
HM	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU		
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU		
ТМ	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU		
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU		
SM1	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU		

Table S1. The sequences of crRNA, head, and tail strands. Red color indicates m6A.

	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM2	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
5112	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM3	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
51415	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM4	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
SWIT	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM5	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
51115	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM6	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
21110	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM7	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM8	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM9	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM10	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM11	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM12	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM13	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM14	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM15	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM16	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM17	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU

	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM18	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
514110	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
SM19	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
51417	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
M1	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
1411	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
M2	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
1112	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
M3	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
M4	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
M5	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
M6	Head	GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGU
	Tail	Phos-CCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU

Table S2. The sequence of the substrate plasmid (pSMART-EGFP). The target sequence is

 colored in blue. The Pvu I restriction enzyme site is colored in red.

CCCGTGTAAA	ACGACGGCCA	GTTTATCTAG	TCAGCTTGAT	TCTAGCTGAT
CGTGGACCGG	AAGGTGAGCC	AGTGAGTTGA	TTGCAGTCCA	GTTACGCTGG
AGTCTGAGGC	TCGTCCTGAA	TGATATGCGA	CCGCCGGAGG	GTTGCGTTTG
AGACGGGCGA	CAGATCGACA	CTGCTCGATC	CGCTCGCACC	TAATACGACT
CACTATAGGG	ATGCCACCAT	GGATGGTGAG	CAAGGGCGAG	GAGCTGTTCA
CCGGGGTGGT	GCCCATCCTG	GTCGAGCTGG	ACGGCGACGT	AAACGGCCAC
AAGTTCAGCG	TGTCCGGCGA	GGGCGAGGGC	GATGCCACCT	ACGGCAAGCT
GACCCTGAAG	TTCATCTGCA	CCACCGGCAA	GCTGCCCGTG	CCCTGGCCCA
CCCTCGTGAC	CACCCTGACC	TACGGCGTGC	AGTGCTTCAG	CCGCTACCCC
GACCACATGA	AGCAGCACGA	CTTCTTCAAG	TCCGCCATGC	CCGAAGGCTA
CGTCCAGGAG	CGCACCATCT	TCTTCAAGGA	CGACGGCAAC	TACAAGACCC

GCGCCGAGGT	GAAGTTCGAG	GGCGACACCC	TGGTGAACCG	CATCGAGCTG
AAGGGCATCG	ACTTCAAGGA	GGACGGCAAC	ATCCTGGGGC	ACAAGCTGGA
GTACAACTAC	AACAGCCACA	ACGTCTATAT	CATGGCCGAC	AAGCAGAAGA
ACGGCATCAA	GGTGAACTTC	AAGATCCGCC	ACAACATCGA	GGACGGCAGC
GTGCAGCTCG	CCGACCACTA	CCAGCAGAAC	ACCCCCATCG	GCGACGGCCC
CGTGCTGCTG	CCCGACAACC	ACTACCTGAG	CACCCAGTCC	GCCCTGAGCA
AAGACCCCAA	CGAGAAGCGC	GATCACATGG	TCCTGCTGGA	GTTCGTGACC
GCCGCCGGGA	TCACTCTCGG	CATGGACGAG	CTGTACAAGT	AAGGATCGAC
GAGAGCAGCG	CGACTGGATC	AGTTCTGGAC	GAGCGAGCTG	TCGTCCGACC
CGTGATCTTA	CGGCATTATA	CGTATGATCG	GTCCACGATC	AGCTAGATTA
TCTAGTCAGC	TTGATGTCAT	AGCTGTTTCC	TGAGGCTCAA	TACTGACCAT
TTAAATCATA	CCTGACCTCC	ATAGCAGAAA	GTCAAAAGCC	TCCGACCGGA
GGCTTTTGAC	TTGATCGGCA	CGTAAGAGGT	TCCAACTTTC	ACCATAATGA
AATAAGATCA	CTACCGGGCG	TATTTTTTGA	GTTATCGAGA	TTTTCAGGAG
CTAAGGAAGC	TAAAATGAGT	ATTCAACATT	TCCGTGTCGC	CCTTATTCCC
TTTTTTGCGG	CATTTTGCCT	TCCTGTTTTT	GCTCACCCAG	AAACGCTGGT
GAAAGTAAAA	GATGCTGAAG	ATCAGTTGGG	TGCACGAGTG	GGTTACATCG
AACTGGATCT	CAACAGCGGT	AAGATCCTTG	AGAGTTTACG	CCCCGAAGAA
CGTTTTCCAA	TGATGAGCAC	TTTTAAAGTT	CTGCTATGTG	GCGCGGTATT
ATCCCGTATT	GACGCCGGGC	AAGAGCAACT	CGGTCGCCGC	ATACACTATT
CTCAGAATGA	CTTGGTTGAG	TACTCACCAG	TCACAGAAAA	GCATCTCACG
GATGGCATGA	CAGTAAGAGA	ATTATGCAGT	GCTGCCATAA	CCATGAGTGA
TAACACTGCG	GCCAACTTAC	TTCTGGCAA <mark>C</mark>	GATCG GAGGA	CCGAAGGAGC
TAACCGCTTT	TTTGCACAAC	ATGGGGGATC	ATGTAACTCG	CCTTGATCGT
TGGGAACCGG	AGCTGAATGA	AGCCATACCA	AACGACGAGC	GTGACACCAC
GATGCCTGTA	GCAATGGCAA	CAACGTTGCG	САААСТАТТА	ACTGGCGAAC
TACTTACTCT	AGCTTCCCGG	СААСААТТАА	TAGACTGGAT	GGAGGCGGAT
AAAGTTGCAG	GATCACTTCT	GCGCTCGGCC	CTCCCGGCTG	GCTGGTTTAT
TGCTGATAAA	TCTGGAGCCG	GTGAGCGTGG	GTCTCGCGGT	ATCATTGCAG
CACTGGGGCC	AGATGGTAAG	CCCTCCCGCA	TCGTAGTTAT	CTACACGACG
GGGAGTCAGG	CAACTATGGA	TGAACGAAAT	AGACAGATCG	CTGAGATAGG
TGCCTCACTG	ATTAAGCATT	GGTAATGAGG	GCCCAAATGT	AATCACCTGG
CTCACCTTCG	GGTGGGCCTT	TCTTGAGGAC	CTAAATGTAA	TCACCTGGCT
CACCTTCGGG	TGGGCCTTTC	TGCGTTGCTG	GCGTTTTTCC	ATAGGCTCCG
CCCCCCTGAC	GAGCATCACA	AAAATCGATG	CTCAAGTCAG	AGGTGGCGAA
ACCCGACAGG	ACTATAAAGA	TACCAGGCGT	TTCCCCCTGG	AAGCTCCCTC
GTGCGCTCTC	CTGTTCCGAC	CCTGCCGCTT	ACCGGATACC	TGTCCGCCTT
TCTCCCTTCG	GGAAGCGTGG	CGCTTTCTCA	TAGCTCACGC	TGTAGGTATC
TCAGTTCGGT	GTAGGTCGTT	CGCTCCAAGC	TGGGCTGTGT	GCACGAACCC
CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC	GGTAACTATC	GTCTTGAGTC
CAACCCGGTA	AGACACGACT	TATCGCCACT	GGCAGCAGCC	ACTGGTAACA
GGATTAGCAG	AGCGAGGTAT	GTAGGCGGTG	CTACAGAGTT	CTTGAAGTGG
TGGCCTAACT	ACGGCTACAC	TAGAAGAACA	GTATTTGGTA	TCTGCGCTCT
GCTGAAGCCA	GTTACCTCGG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA
ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA
CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTTGATTTT	CTACCGAAGA
		AAGGCCCA		

Figure S1. 10% denaturing PAGE analysis of the representative RNA ligation reaction

Figure S2. Agarose gel (0.8%) analysis of the DNA cleavage reactions by Cas9 with UM, FM, HM, or TM at various reaction time points.

Figure S3. Agarose gel (0.8%) analysis of the DNA cleavage reactions by Cas9 with SM1 – SM19 for 60 min.

Figure S4. Agarose gel (0.8%) analysis of the DNA cleavage reactions by Cas9 with M1 - M6 for 60 min.

- A. Petrov, T. Wu, E. V. Puglisi, J. D. Puglisi, Chapter Seventeen, *Methods Enzymol.* 2013, 530, 315.
- [2] H.Y. Kim, S. J. Kang, Y. Jeon, J. An, J. Park, H. J. Lee, J.-E. Jang, J. S. Ahn, D. Bang, H. S. Chung, C. Jeong, D.-R. Ahn, *Chem. Commun.* 55, 2019, 24, 3552.
- [3] H. Kim, Y. Park, J. B. Lee, Self-assembled messenger RNA nanoparticles (mRNA-NPs) for

efficient gene expression, Sci. Rep. 5 (2015) 12737.

[4] E. K. Brinkman, T. Chen, M. Amendola and B. V. Steensel, *Nucleic Acids Res.*, 2014, 42, e168.