Supporting information

Facile synthesis of MnO/NC nanohybrids toward highefficiency ORR for zinc-air battery

Qingxi Zhuang,^{§a} Chengjun Hu,^{§a} Weiting Zhu,^a Gao Cheng,*a Meijie Chen,^a Ziyuan Wang,^b Shijing Cai,^b Litu Li,^a Zier Jin,*b and Qiang Wang *c

- ^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- ^b Foshan Institute of Environment and Energy Technology, Foshan 528000, China.
- ^c School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China.
- § These authors contributed equally to this work.

E-mail address: chengg36@gdut.edu.cn; fieet0325@163.com; wysnu@swu.edu.cn

^{*} Corresponding author.

Experimental

Characterizations

The crystal structures of products were analyzed by X-ray diffraction (XRD, Aeris), utilizing Cu-K α radiation with an applied voltage of 15 kV and an electrical current of 40 mA, across a 2θ range of $10{\sim}80^{\circ}$. Raman spectra were recorded using a 532-nanometre laser on a Raman spectrometer (LabRAM HR Evolution). The morphologies and microstructures of as-prepared samples were studied by field emission scanning electron microscopy (FESEM, SU8220) at a 15 kV accelerating voltage and field emission scanning electron microscopy (FETEM, Tecnai G2F30) at a 300 kV accelerating voltage. The elemental compositions and their contents and surface bonding states were characterized by X-ray photoelectron spectroscopy (XPS, Escalab 250 XI). The monochromatic radiation energy of Al K α was set at 1486.6 eV. The measured spectrum was corrected for the amorphous carbon peak (C 1s) at 284.8 eV.

Electrochemical measurements

Electrochemical measurements were performed using a CHI 760E electrochemical workstation equipped with a standard three-electrode electrochemical cell. Rotating disk electrode (RDE)/rotating ring disk electrode (RRDE), Ag/AgCl electrode (3.5 M KCl), and graphite rod were used as working electrode, reference electrode, and counter electrode, respectively. The catalyst ink was prepared as follows: 7.5 mg of catalyst was added to a solution containing 950 µL ethanol and 50 µL Nafion, and the mixed solution was then treated by sonication for 1 h. The homogeneous ink was dropped onto the RDE/RRDE for electrochemical tests. The mass loading on the RDE/RRDE was ~ 0.27 mg cm⁻². All potentials in this study were converted to reversible (RHE) hydrogen electrode using the equation: $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.2046$, where $E_{Ag/AgCl}$ is the measured potential vs. Ag/AgCl electrode. Cyclic voltammetry (CV) was performed in O₂-saturated 0.1 M KOH at a scan rate of 50 mV/s. And linear sweep voltammetry (LSV) was tested in

O₂-saturated 0.1 M KOH at a scan rate of 5 mV/s.

For the Tafel slope, kinetic current density (J_K) is corrected through the diffusion current density (J_L) from the Koutecky-Levich (K-L) equation (1):

$$J_K = \frac{J_L \times J}{J_L - J} \tag{1}$$

K-L plots (J^{-1} vs. $\omega^{-1/2}$) are obtained at different potentials and fitted to linear curves using the following K-L equation (2) to calculate the number of electrons transferred (n):

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_k} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_{k(2)}}$$

where ω is the rotating rate. B is determined from the slope of K-L plots based on equation (3):

$$B = 0.62nFC_0(D_0)^{2/3}v^{-1/6}$$
(3)

where F is the Faraday constant (96485 C mol⁻¹), n is the number of electrons transferred per molecule of oxygen, C_0 is the bulk concentration of O_2 (1.2 × 10⁻⁶ mol cm⁻³), D_0 is the diffusion of diffusion of O_2 (1.9 × 10⁻⁵ cm² s⁻¹), and v is the kinetic viscosity of the electrolyte (0.01 cm² s⁻¹)

Electron transfer number (n) and H_2O_2 yield were tested using RRDE and calculated using the following equations (4) and (5):

$$H_2O_2 \text{ yield} = 200 \times \frac{J_R/N}{J_D + J_R/N}$$
 (4)
$$n = \frac{4 \times J_D}{J_D + J_R/N}$$
 (5)

where J_D and J_R are the disc and ring current densities, respectively, and N (0.37, using $[Fe(CN)]^{3-}/[Fe(CN)_6]^{4-}$ redox couple) is the collection efficiency of Pt ring.

Double-layer capacitance ($C_{\rm dl}$) was calculated from cyclic voltammetry at different scan rates in the non-Faradic region (1.07~1.22 V). $C_{\rm dl}$ value is derived from the following equation (6):

$$C_{dl} = \frac{|j_a - j_c|}{2d(v_b)}$$
 (6)

 v_b = scan rate variance, j_a - $j_{\underline{c}}$ = the change in current density.

ECSA value is derived from the following equation (7):

$$ECSA = \frac{C_{dl}}{C_s} \tag{7}$$

 $C_{\rm s}$ is the specific capacitance of the as-synthesized sample.

Aqueous Zinc-air battery assembly and test

The aqueous ZAB performance was measured on an electrochemical workstation (CHI 760E) and a battery testing system (LAND, CT3001A 1U). The dried catalyst with a loading of ~ 1.00 mg cm⁻² was uniformly coated on the stainless steel mesh as an air electrode. A polished zinc plate was used as the negative electrode, and the electrolyte consisted of KOH (6 M) and Zn(CH₃COO)₂ (0.2 M).

Fig. S1 XRD image of MnCO₃/NC.

Fig. S2 Particle-size distribution of MnO nanoparticles on the MnO/NC-900.

Fig. S3 XPS survey spectra of (a) MnO/NC-600, (b) MnO/NC-700, (c) MnO/NC-800, and (d) MnO/NC-900.

Fig. S4 CV curves of MnO/NC-600, MnO/NC-700, MnO/NC-800, MnO/NC-900, and NC-900 in O_2 -saturated 0.1 M KOH electrolyte at a scan rate of 50 mV s⁻¹.

Fig. S5 LSV curves of MnO/NC-900 and Pt/C at 1600 rpm.

Fig. S6 LSV curves of (a) MnO/NC-600, (b) MnO/NC-700, (c) MnO/NC-800, (d) MnO/NC-900, and (e) Pt/C with different rotation rates.

Fig. S7 RRDE polarization curves of MnO/NC-600, MnO/NC-700, MnO/NC-800, MnO/NC-900, and NC-900 in O_2 -saturated 0.1 M KOH solution at a rotation rate of 1600 rpm.

Fig. S8 CV curves for ORR at various scan rates: (a) MnO/NC-600, (b) MnO/NC-700, (c) MnO/NC-800, and (d) MnO/NC-900.

Fig. S9 Current density to scanning rate of MnO/NC-600, MnO/NC-700, MnO/NC-800, and MnO/NC-900.

Fig. S10 A schematic showing the aqueous ZAB configuration.

Fig. S11 Discharge curves of MnO/NC-900-ZAB till complete Zn consumption at diverse current densities.

Fig. S12 Galvanostatic charge-discharge cycling performance and corresponding voltage efficiency based on MnO/NC-900-ZAB at a current density of 5 mA cm⁻².

Sample	Mn	С	N	О
MnO/NC-600	0.11	95.0	1.11	3.78
MnO/NC-700	0.06	96.2	0.76	2.98
MnO/NC-800	0.11	96.5	0.61	2.78
MnO/NC-900	0.08	96.9	0.19	2.83

Table S1. Element contents in the MnO/NC samples measured by XPS.

Table S2. Relative proportions of pyridinic-N, pyrrolic-N, graphitic-N, and oxidized-N in the MnO/NC samples measured by XPS.

Sample	pyridinic-N	pyrrolic-N	graphitic-N	oxidized-N
MnO/NC-600	30.5	44.4	9.40	15.7
MnO/NC-700	32.7	41.2	13.2	12.9
MnO/NC-800	35.0	35.8	13.9	15.3
MnO/NC-900	37.2	30.1	18.7	14.0

Table S3. Relative proportions of $O_\alpha,$ $O_\beta,$ and O_γ in the MnO/NC samples measured by XPS.

Sample	O_{lpha}	O_{eta}	O_{γ}
MnO/NC-600	43.2	38.2	18.6
MnO/NC-700	35.9	47.6	16.5
MnO/NC-800	39.8	48.2	12.0
MnO/NC-900	34.7	49.0	16.3

Table S4. The ORR performance of reported Mn-based catalysts for comparison.

Catalysts	$E_{1/2}$ (V vs.	Reference
	RHE)	S
MnO/NC-900	0.74	This work
MnO/RGO	0.60	1
MnO@CNT	0.70	2
MnO/N-CC-2	0.69	3
MnO/CC	0.72	4
MnO@NC-1100	0.74	5
N-CN@MnO	0.69	6
MnO	0.63	7
NC/MnO ₂ /NC (15)	0.73	8
Mn-defected Mn ₃ O ₄	0.65	9
H - β - M n O_2	0.69	10
Mn ₂ O ₃ nanoballs	0.68	11
γ -MnO $_2$	0.66	12
MnO ₂ nanoflakes	0.67	13
Cu-α-MnO ₂ nanowires	0.71	14
λ-MnO ₂ -Z	0.67	15

References

- 1 Q. L. Wu, M. L. Jiang, X. F. Zhang, J. N. Cai and S. Lin, A novel octahedral MnO/RGO composite prepared by thermal decomposition as a noble-metal free electrocatalyst for ORR, *J. Mater. Sci.*, 2017, **52**, 6656-6669.
- 2 F. Li, T. T. Qin, Y. P. Sun, R. J. Jiang, J. F. Yuan, X. Q. Liu and A. P. O'Mullane, Preparation of a one-dimensional hierarchical MnO@CNT@Co-N/C ternary nanostructure as a high-performance bifunctional electrocatalyst for rechargeable Zn-air batteries, *J. Mater. Chem. A*, 2021, **9**, 22533-22543.
- 3 W. Hao, S-H. Lee and S. G. Peera, Xerogel-derived manganese oxide/N-doped carbon as a non-precious metal-based oxygen reduction reaction catalyst in microbialfuel cells for energy conversion applications, *Nanomaterials*, 2023, **13**, 2949.
- 4 Q. Liu, P. Z. Qiao, M. M. Tong, Y. Xie, X. X. Zhang, K. Lin, Z. J. Liang, L. Wang and H. G. Fu, Enhancing zinc-air battery performance by constructing three-dimensional N-doped carbon coating multiple valence Co and MnO heterostructures *Nano Res.*, 2024, **17**, 5104-5113.
- 5 L-Q. Ji, J. Yang, Z-Y. Zhang, Y. Qian, Z. Su, M. Han and H-K. Liu, Enhanced catalytic performance for oxygen reduction reaction erived from nitrogen-richtetrazolate-based heterometallic metal-organic frameworks, *Cryst Growth Des*, 2019, **19**, 2991-2999.
- 6 M. G. Wang, F. Peng, M. Wang and J. Han, N-doped carbon nanospheres with nanocavities to encapsulate manganese oxides as ORR electrocatalysts, *New J. Chem.*, 2022, **44**, 14915-14921.
- 7 K. X. Lei, X. P. Han, Y. X. Hu, X. Liu, L. Cong, F. Y. Cheng and J. Chen, Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction, *Chem. Comm.*, 2015, **51**,11599-11602.
- 8 Y. N. Li, S. Y. Cao, L. Fan, J. Han, M. G. Wang and R. Guo, Hybrid shells of MnO₂ nanosheets encapsulated by N-doped carbon towards nonprecious oxygen reduction reaction catalysts, *J. Colloid Interface Sci.*, 2018, **527**, 241-250.

- 9 Y-C. Zhang, S. Ullah, R. R. Zhang, L. Pan, X.W Zhang and J-J. Zoua, Manipulating electronic delocalization of Mn₃O₄ by manganese defects for oxygen reduction reaction, *Appl Catal B-Environ*, 2020, **277**, 119247.
- 10 G. Cheng, P. Liu, S. H. Chen, Y. X. Wu, L. H. Huang, M. J. Chen, C. J. Hu, B. Lan, X. H. Su, M. Sun, and L. Yu, Self-templated formation of hierarchical hollow β-MnO₂ microspheres with enhanced oxygen reduction activities, *Colloid Surface A*, 2022, 637, 128228.
- 11 S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S. K. Bhattacharya, A. Bhaumik, P. Lemmens and S. K. Pal, Microwave-assisted synthesis of porous Mn₂O₃ nanoballs as bifunctional electrocatalyst for oxygen reduction and evolution reaction, *Catal. Sci. Technol.*, 2016, 6, 1417-1429.
- 12 B. Zhang, G. Cheng, B. Lan, X. Zheng, M. Sun, F. Ye, L. Yu and X. Cheng, Crystallization design of MnO₂ via acid towards better oxygen reduction activity, *CrystEngComm*, 2016, **18**, 6895-6902.
- 13 C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews, F. Huo, T. Sritharan and Z. Xu, Ultrathin MnO₂ nanoflakes as efficient catalysts for oxygen reduction reaction, *Chem. Commun.*, 2014, **50**, 7885-7888.
- 14 D. J. Davis, T. N. Lambert, J. A. Vigil, M. A. Rodriguez, M. T. Brumbach, E. N. Coker and S. J. Limmer, Role of Cu-ion doping in Cu-α-MnO₂ nanowire electrocatalysts for the oxygen reduction reaction, *J. Phys. Chem. C*, 2014, 118, 17342-17350.
- 15 S. Lee, G. Nam, J. Sun, J.-S. Lee, H.-W. Lee, W. Chen, J. Cho and Y. Cui, Enhanced intrinsic catalytic activity of λ-MnO₂ by electrochemical tuning and oxygen vacancy generation, *Angew. Chem. Int. Ed.*, 2016, **55**, 8599-8604.