Supporting Information

Development of an assay for colorimetric and fluorometric detection of $\rm H_2S$

Priyotosh Ghosh, Diptiman De and Prithidipa Sahoo*

Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.

Chemosensor	Linker	Colorimetric detection	Fluorometric detection
N1	m-amino phenol (EDG)	Negligible	No
N2	p-anisidine (EDG)	No	No
N3	Aniline (EDG)	No	No
N4	m-nitro aniline (EWG)	Yellow to orange	No
N5	p-nitro aniline (EWG)	Yellow to purple	No
N6	1,8-napthalic anhydride + Hydrazine (EWG)	Colourless to Yellow	No
N7	3-amino-9- ethylcarbazole (EDG)	No	No
N8	1,8-napthalic anhydride + Ethylenediamine (EWG)	Negligible	Light blue fluorescence
N9	Picolyl amine (EWG)	Negligible	Cyan blue fluorescence
N10	Furfuryl amine (EWG)	No	Intense cyan blue fluorescence

Table S1. Comparison of activity parameters for different EDG and EWG used in this study

¹H NMR of N1 in DMSO-d₆:

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 15.39 (s, 1H), 9.25 (d, 1H), 8.04-8.02 (d, 1H, J=8), 7.81-7.79 (d, 1H, J=8), 7.69-7.67 (d, 1H, J=8), 7.54-7.50 (t, 1H), 7.34-7.32 (q, 2H), 7.07-7.05 (d, 1H, J=8), 6.99-6.97 (d, 2H), 6.83-6.80 (1H,d). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 159.36, 142.93, 136.57, 129.20, 127.87, 123.38, 122.96, 118.24, 110.57, 108.49, 50.74. HRMS (TOF MS): (m/z, %): for C17H13NO2+H⁺: Found: m/z = 264.1002 (M+H⁺).

Figure S1.¹H NMR of N1 in CDCl₃ (400 MHz).

Figure S2. ¹³C NMR of N1 in CDCl₃ (100 MHz).

¹H NMR of N2 in DMSO-d₆:

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 15.59 (s, 1H), 9.30 (s, 1H), 8.10-8.08 (d, 1H, J=8), 7.79-7.77 (d, 1H, J=12), 7.72-7.70 (d, 1H, J=8), 7.52-7.49 (t, 1H), 7.35-7.30 (d, 2H), 7.11-7.08 (d, 1H, J=8), 6.75-6.73 (1H,d), 6.66-6.63 (1H,d), 3.85 (3H,S). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 169.24, 158.55, 153.73, 138.54, 136.01, 129.30, 127.88, 123.32, 122.00, 121.52, 118.81, 114.83, 55.55. HRMS (TOF MS): (m/z, %): C18H15NO2+H⁺: Found: m/z = 278.1161 (M+H⁺).

Figure S3. ¹H NMR of N2 in CDCl₃ (400 MHz).

Figure S4. ¹³C NMR of N2 in CDCl₃ (100 MHz).

¹H NMR of N3 in DMSO-d₆:

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 15.50 (s, 1H), 9.33-9.32 (d, 1H), 8.10-8.08 (d, 1H, J=8), 7.81-7.78 (d, 1H, J=12), 7.72-7.70 (d, 1H, J=8), 7.50-7.44 (m, 3H), 7.38-7.29 (m, 4H), 7.08-7.06 (d, 1H, J=8), ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 154.35, 136.87, 129.68, 128.10, 126.50, 123.51, 122.49, 120.19, 118.76. HRMS (TOF MS): (m/z, %): for C17H13NO+H⁺: Found: m/z = 248.1060 (M+H+).

Figure S5. ¹H NMR of N3 in CDCl₃(400 MHz).

¹³C NMR of N3 in CDCl₃:

Figure S6. ¹³C NMR of N3 in CDCl₃ (100 MHz).

¹H NMR of N4 in DMSO-d₆:

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 14.87 (s, 1H), 9.50 (s, 1H), 8.22-8.14 (m, 3H, J=8), 7.90-7.88 (d, 1H, J=8), 7.79-7.77 (d, 1H, J=8), 7.68-7.56 (m, 3H), 7.42-7.38 (t, 1H), 7.19-7.16 (d, 1H, J=12), ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 158.64, 136.87, 130.40, 129.48, 128.39, 127.58, 124.01, 120.96, 120.59, 119.15, 115.16. HRMS (TOF MS): (m/z, %): for C17H12N2O3+H⁺:, Found: m/z = 293.0907 (M+H⁺).

Figure S7. ¹H NMR of N4 in CDCl₃(400 MHz).

¹³C NMR of N4 in CDCl₃:

Figure S8. ¹³C NMR of N4 in CDCl₃ (100 MHz).

¹H NMR of N5 in DMSO-d₆

¹H NMR of N5 (400 MHz, DMSO-d₆): δ (ppm) = 15.26 (s, 1H), 9.68 (s, 1H), 8.55-8.52 (d, 1H, J = 12 Hz), 8.34-8.32 (d, 2H, J = 8 Hz), 7.99-7.97 (d, 1H, J = 8 Hz), 7.88-7.86 (d, 2H, J = 8 Hz), 7.81-7.79 (d, 1H, J = 8 Hz), 7.59-7.55 (t, 1H, J = 12 Hz), 7.40-7.36 (t, 1H, J = 12 Hz), 7.01-6.98 (t, 1H, J = 12 Hz), ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 156.51, 138.48, 129.19, 128.50, 126.88, 125.28, 124.11, 122.39, 121.21, 120.82, 110.61. HRMS (TOF MS): (m/z, %): for C17H12N2O3+H⁺, Found: m/z = 293.0909 (M+H+).

Figure S9. ¹H NMR of **N5** in DMSO-d₆ (400)

¹³C NMR of N5 in DMSO-d₆:

Figure S10. ¹³C NMR of N5 in DMSO-d₆ (100 MHz).

2. Selectivity

Figure S11. (A) colorimetric changes of (A) N1, (B) N2, (C) N3, (D) N4, (E) N5, in presence of 1) Blank, 2) H_2S , 3) $SO_4^{2-}4$ CN⁻, 5) SCN⁻¹, 6) F⁻, 7), ClO⁻, 8) CN⁻, 9) NO₃⁻, 10) $H_2PO_4^{-}$, 11) CO, 12) cysteine, (B) Absorbance spectra of N5 in presence of different analytes at 544 nm in H_2O -CH₃CN (4:1, v/v) at neutral pH.

3. Fluorescence spectra of N1, N2, N3, N4 and N5

Figure S12. Fluorescence spectra of (A) N1, (B) N2, (C) N3, (D) N4, (E) N5 in presence of H_2S (upto 40 μ M).

4. pH titration study:

Figure S13. Effect of pH on the absorbance intensity of N5 (10⁻⁵ M) in the absence of H_2S (black line) and in the presence of H_2S (10⁻⁴M, red line).

5. Job's plot

Figure S14. Job's plot of N5 (10 μ M) with H₂S in DMSO-water (1:1, v/v), at neutral pH, by absorbance method, which indicate 1:1 stoichiometry for N5 with H₂S. Standard deviations are represented by error bar (n=3).

6. Calculation of limit of detection (LOD) of N5 with H₂S:

The detection limit of the chemosensor N5 for H_2S was calculated on the basis of absorbance titration. To determine the standard deviation for the absorbance intensity, the absorbance intensity of four individual receptors without H_2S was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of N5 for sensing H_2S was determined from the following equation²⁻³:

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Figure S15. Linear fit curve of N5 at 544 nm with respect to H_2S concentration

For N5 with H₂S:

From the linear fit graph, we get slope = 27330.34743, and SD value is 0.0005890 Thus, using the above formula, we get the Limit of Detection = 6.51×10^{-8} M. Therefore N5 can detect H₂S up to this very lower concentration by absorbance technique.

7. Calculation of limit of detection (LOD) of N4 with H₂S:

The detection limit of the chemosensor N4 for H_2S was calculated on the basis of absorbance titration. To determine the standard deviation for the absorbance intensity, the absorbance intensity of four individual receptors without H_2S was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of N4 for sensing H_2S was determined from the following equation²⁻³:

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Figure S16. Linear fit curve of N4 at 460 nm with respect to H₂S concentration

For N4 with H₂S:

From the linear fit graph, we get slope = 49125.24485, and SD value is 0.0117969. Thus, using the above formula, we get the Limit of Detection = 7.2×10^{-7} M. Therefore N4 can detect H₂S up to this concentration by absorbance technique.

Table S2. Comparision Table

Sensors	Analytes	Detection medium	Sensitivity	Detection limits	Reference
2- hydroxy napthaldehyde conjugated 2,4-DNP (N5)	H_2S	DMSO:H2O (1:1) solution using 10 mM phosphate buffer at pH 7.0	High	65 nM	Present work
2,3- dihydroxybenzaldehyd e and sulfanilamide	H ₂ S	DMSO: Bis–Tris buffer (4 : 6, 10 mM, pH 7.0)	High	30 µM	Anal. Methods, 2021, 13, 1332
Naminophthalimide and 8- hydroxyjulolidine-9- carboxaldehyde	Cu^{2+}, PO_4^{3-} and S ²⁻		Low		Ind. Eng. Chem. Res. 2017, 56, 30, 8399–8407
5-(azo-benzene)- salicylidene-aniline	H ₂ S	DMSO DMSO– phosphate-buffered saline (PBS) (4 :1, v/v, pH 7.4).	High		Luminescence.2 017 ,32(5),765- 771
azo-dye based bis- Schiff base	S ²⁻	HEPES buffer (10 mL, pH 7.00).	High	16 μM	Anal. Methods, 2018,10, 2317- 2326
2-aminoethyl piperazine and 4- chloro-7-nitrobenz-2- oxa-1,3-diazole	H ₂ S, Hg ²⁺	bis-tris buffer solution (10 mM, pH 7.0) to	Modarate		Dalton Trans., 2016,45, 5700- 5712
Dabsyl based	H ₂ S, Hg ²⁺	HEPES-CH3CN buffer.	Modarate	28 mM	ChemistrySelect, 2016, 1(8):1533- 1540
4-(piperidin-1-yl) naphthalene-1,2-dione	H ₂ S	CH3CN: HEPES buffer (50:50, v:v, pH-7.4)	High	0.77 μΜ	Org. Biomol. Chem., 2016,14, 570-576
2- hydroxy-1- napthylaldehyde	H ₂ S/HS ⁻	CH3CN:HEPES buffer solution	High	1.67 μM	New J. Chem., 2015,39, 5669- 5675

8. Evaluation of the association constants for the formation of N5-H₂S complex:

By Absorbance Method:

Binding constant of the chemosensor **N5** was calculated through absorbance method by using the following equation:

$$1/(A - A_0) = 1/K(A_{max} - A_0)[G] + 1/(A_{max} - A_0)$$
(ii)

Where A_0 , A_{max} , and I represent the absorbance intensity of free N5, the maximum absorbance intensity observed in the presence of added H_2S at 544 nm, the absorbance intensity at a certain concentration of the H_2S respectively and [G] is the concentration of the guest H_2S . Binding constant calculation graph (absorbance method):

Figure S17. Linear regression analysis for the calculation of association constant value by absorbance titration method.

The association const. (K_a) of N5 for sensing H_2S was determined from the equation:

 $K_a = intercept/slope$. From the linear fit graph, we get intercept= 0.06348, slope = 1.52861×10^{-8} . Thus, we get, $K_a = (0.06348) / (1.52861 \times 10^{-8}) = 4.15 \times 10^6 \text{ M}^{-1}$.

9. DFT study

Table S3. Details of the geometry optim	ization in Gaussian 09 program
---	--------------------------------

Details	N3	N3-H ₂ S	
Calculation method	B3LYP	B3LYP	
Basis set	aug ccpvdz	aug ccpvdz	
E(CAM-B3LYP) (a.u.)	-785.727627	-785.730658	
Charge, Multiplicity	0, 1	0, 1	
Solvent (CPCM)	DMSO	DMSO	

Details	N4	N4-H ₂ S	
Calculation method	B3LYP	B3LYP	
Basis set	aug ccpvdz	aug ccpvdz	
E(CAM-B3LYP) (a.u.)	-990.270227	-990.271784	
Charge, Multiplicity	0, 1	0, 1	
Solvent (CPCM)	DMSO	DMSO	

Details	N5	N5-H ₂ S	
Calculation method	B3LYP	B3LYP	
Basis set	aug ccpvdz	aug ccpvdz	
E(CAM-B3LYP) (a.u.)	-990.272758	-990.275422	
Charge, Multiplicity	0, 1	0, 1	
Solvent (CPCM)	DMSO	DMSO	

TDDFT- Calculations

Table S4. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of CPLC. The data were calculated by TDDFT//B3LYP/ aug ccpvdz based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	fb	Composition ^c (%)
N3	$S_0 \rightarrow S_1$	3.1957 eV 387.98nm	0.5702	$H \to L (70.08\%)$
N3+H ₂ S	$S_0 \rightarrow S_1$	2.9007 ev 427.43 nm	0.5457	$H \to L (70.53\%)$
N4	$S_0 \rightarrow S_2$	3.1933 ev 388.26 nm	0.5303	$H \rightarrow L+1 \ (70.02\%)$
N4+H ₂ S	$S_0 \rightarrow S_2$	2.9388 ev 421.88 nm	0.4923	$H \rightarrow L+1 \ (70.37\%)$
N5	$S_0 \rightarrow S_1$	2.6019 ev 476.31 nm	0.5325	$H \to L (70.44\%)$
N5+H ₂ S	$S_0 \rightarrow S_1$	2.4749 ev 500.96 nm	0.6576	$H \to L (70.59\%)$

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

Table S5. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	Е _{номо} (a.u.)	E _{LUMO} (a.u.)	∆E(a.u.)	ΔE(eV)	∆E(kcal/mol)
N3	-0.21877	-0.08439	0.13438	3.65	84.32
N3+H ₂ S	-0.21228	-0.09083	0.12145	3.30	76.21
N4	-0.22390	-0.08931	0.13459	3.66	84.45
N4+H ₂ S	-0.21804	-0.09457	0.12347	3.35	74.47
N5	-0.22579	-0.11646	0.10933	2.97	68.80
N5+H ₂ S	-0.22121	-0.11811	0.10316	2.80	64.73

10. HRMS

Figure S18. HRMS spectra; The experimental mass (A): N5 is 293.0909 ($C_{17}H_{12}N_2O_3$) and (B): N5+H₂S complex is 316.8710 ($C_{17}H_{12}N_2O_3$ + Na).

11. ¹H NMR of N6 in DMSO-d₆:

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 12.46 (s, 1H), 9.78 (s, 1H), 8.56-8.58 (d, 2H, J=8), 8.55-8.52 (d, 3H, J=12), 8.12-8.10 (1H,d), 7.96-7.92 (d, 3H), 7.64-7.59 (t, 1H), 7.47-7.43 (t, 1H), 7.33-7.31 (d, 1H, J=8). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 170.11, 160.64, 160.48, 135.77, 134.81, 132.21, 131.46, 131.25, 129.04, 128.47, 127.85, 127.43, 126.94, 124.03, 122.38, 122.01, 118.81, 108.06. ESI MS: (m/z, %): for C23H14N2O3+H⁺: Found: m/z = 367.10 (M+H⁺).

Figure S19. ¹H NMR of N6 in CDCl₃ (400 MHz).

¹³C NMR of N6 in DMSO-d₆:

Figure S20. ¹³C NMR of **N6** in DMSO-d₆ (100 MHz).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 16.37 (s, 1H), 9.84 (s, 1H), 8.57–8.59 (d, 2H, J = 8 Hz), 8.26–8.28 (d, 1H, J = 8 Hz), 7.90–7.92 (d, 1H, J = 8 Hz), 7.77–7.82 (t, 2H, J = 20 Hz), 7.71–7.73 (d, 1H, J = 8 Hz), 7.62–7.64 (t, 1H, J = 8 Hz), 7.55–7.57 (t, 1H, J = 8 Hz), 7.47–7.51 (t, 1H, J = 16 Hz), 7.34–7.37 (t, 1H, J = 12 Hz), 7.23–7.26 (t, 1H, J = 12 Hz), 7.04–7.06 (d, 1H, J = 8 HZ), 4.47–4.49 (q, 2H, J = 8 Hz), 1.31–1.34 (t, 3H, J = 12 Hz). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 169.46, 153.90, 140.30, 138.46, 135.94, 133.15, 129.04, 127.93, 126.67, 126.32, 123.28, 123.02, 122.26, 122.11, 120.92, 120.36, 119.55, 119.05, 112.08, 109.98, 109.52, 108.67, 37.19, 13.83. HRMS (TOF MS): (m/z, %): Calcd. for C25H20N2O: 364.1576. Found: m/z = 365.1283 (M + H⁺).

Figure S21. ¹H NMR of N7 in CDCl₃ (400 MHz).

¹³C NMR of N7 in DMSO-d₆:

Figure S22. ¹³C NMR of N7 in DMSO-d₆ (100 MHz).

12. Fluorescence spectra of N6 and N7

Figure S23. Fluorescence spectra of (A) N6 and (B) N7 in presence of H_2S (upto 40 μ M).

¹H NMR ofN8 in DMSO-d₆:

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 14.04 (s, 1H), 9.09-9.11 (d, 1H, J=8), 8.47-8.49 (d, 2H, J=8), 8.43-8.45 (d, 2H, J=8), 7.94-7.96 (d, 1H, J=8), 7.83-7.87 (t, 2H, J=16), 7.67-7.70 (d, 1H, J=12), 7.59-7.60 (d, 1H, J=4), 7.30-7.34 (t, 1H, J=16), 7.13-7.17 (t, 1H, J=16), 6.68-6.70 (d, 1H, J=8), 4.41-4.44 (t, 2H, J=12), 3.98-4.02 (q, 2H, J=16).¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 175.63, 163.53, 159.92, 136.72, 134.36, 134.03, 131.29, 130.78, 128.75, 127.70, 127.44, 127.18, 125.31, 124.82, 122.17, 122.00, 118.57, 106.12 and 49.68. HRMS (TOF MS): (m/z, %): Calcd. for C25H19N2O3+H⁺: 395.1390, Found: m/z = 395.1412 (M+H⁺).

Figure S24. ¹H NMR of N8 in CDCl₃ (400 MHz).

¹³C NMR of N8 in DMSO-d₆:

Figure S25. ¹³C NMR of N8 in DMSO-d₆ (100 MHz).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 14.32 (s, 1H), 9.28–9.30 (d, 1H, J = 8 Hz), 8.58–8.59 (d, 1H, J = 8 Hz), 8.09–8.11 (d, 1H, J = 8 Hz), 7.80–7.84 (dd, 1H, J = 16 Hz), 7.73–7.75 (d, 1H, J = 8 Hz), 7.63–7.65 (d, 1H, J = 8 Hz), 7.42–7.46 (dd, 2H, J = 16 Hz), 7.32–7.35 (d, 1H, J = 12 Hz), 7.18–7.22 (dd, 1H, J = 16 Hz), 6.73–6.75 (d, 1H, J = 8 Hz), 4.99–5.00 (s, 2H, J = 4 Hz). ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 176.86, 159.89, 156.71, 149.45, 137.22, 134.27, 128.94, 127.98, 125.37, 125.25, 122.85, 122.35, 121.93, 118.57, 106.11, 56.18. HRMS (TOF MS): (m/z, %): calcd for C17H14N2O: 262.1106. Found: m/z = 263.1183 (M + H⁺).

Figure S26. ¹H NMR of N9 in CDCl₃ (400 MHz).

¹³C NMR of N9 in DMSO-d₆:

Figure S27. ¹³C NMR of N9 in DMSO- d_6 (100 MHz).

¹H NMR of N10 in DMSO-d₆:

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 14.31 (s, 1H); 9.31-9.28 (d, 1H, J= 12 Hz); 8.12-8.10 (d, 1H, J = 8 Hz); 7.78-7.76 (d, 1H, J = 8 Hz); 7.68-7.67 (q, 2H); 7.49-7.45 (m, 1H); 7.25-7.22 (t, 1H, J= 12 Hz); 6.79-6.76 (d, 1H, J = 12 Hz); 6.47-6.46 (d, 2H); 4.90-4.89 (d, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 172.63, 159.36, 142.93, 136.57, 133.28, 129.20, 127.87, 126.57, 123.38, 122.96, 118.24, 110.57, 108.49, 107.57, 50. 74. C16H13NO2: ESI-MS: 274.25 (M + H⁺)

Figure S28. ¹H NMR of N10 in CDCl₃ (400 MHz).

¹³C NMR of N10 in DMSO-d₆:

Figure S29. ¹³C NMR of N10 in DMSO-d₆ (100 MHz).

13. NMR tritration of N10

Figure S30. ¹H NMR titration [400 MHz] of N10 in DMSO-d₆ at 25 °C and the corresponding changes after the addition of Na₂S in D₂O from (1) only N10, (2) N10 + 1.5 equivalent, (2) N10 + 2 equivalent of Na₂S.

12. Top view of energy optimized geometry:

Figure S31. Optimized structures of enol-N10 and keto-N10 moiety with their corresponding energies.

13. Calculation of limit of detection (LOD) of N10 with H₂S:

The detection limit of the chemosensor N10 for H_2S was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the fluorescence intensity of four individual receptors without H_2S was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of N10 for sensing H_2S was determined from the following equation²⁻³:

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Figure S32. Linear fit curve of N10 at 461 nm with respect to H₂S concentration

For N10 with H₂S:

From the linear fit graph, we get slope = 7.41333×10^7 , and SD value is 0.46724. Thus, using the above formula, we get the Limit of Detection = 0.18×10^{-7} M. Therefore N10 can detect H₂S up to this concentration by fluorescence technique.