Electronic Supplementary Information

Synergy of Self-Driven and Heterogeneous Effect on Biomass-Derived Urchin-like Mn₃O₄/C₃N₄ Janus Micromotor Catalyst for Efficient Degradation of Carbamazepine

Jie Yang,¹ Wenning Yang,^{2#} Chao Zhang,³ Jian Gong,¹ Ming Xu,⁴ Jia Li,⁵* Chengzhang Liu ⁵

¹ Department of Pharmaceutical and Bioengineering, ZiBo Vocational Institute, ZiBo, 255000, P. R. China

² Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China

³ School of Artificial Intelligence and Big Data, ZiBo Vocational Institute, ZiBo, 255000, P. R. China

⁴ State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China

⁵ School of Material Science and Engineering, University of Jinan, Jinan, 250022, China

[#] The authors contribute equally: Wenning Yang

* Corresponding author: mse_lij@ujn.edu.cn (Jia Li), +86139531854

Keywords: Biomass, Heterostructure, Photocatalysis, Micromotor, Carbamazepine

Table of Content

Section 1: Supporting Video

Video S1 Motion behavior of Mn₃O₄/C₃N₄/C Janus micromotor catalyst (Mn₃O₄/C₃N₄-

JMC) in 1%, 3% and 5% H₂O₂ aqueous containing 0.5% of sodium dodecyl sulfonate.

Section 2: Figures

Figure S1 DSC curves of Mn₃O₄/C₃N₄-JMC.

Figure S2 Effect of active substance trapping agent on degradation.

Section 3: Tables

Table S1 Pore texture parameters of the obtained samples.

Section 4: The study of drag force, resistance and working efficiency of

micromotor catalyst.

Figure S1 DTA curves of Mn₃O₄/C₃N₄-JMC, pure Mn₃O₄ and C₃N₄.

Figure S2 Effect of active substance trapping agent on degradation

Figure S3 Plot of pseudo-first-order kinetics (a) and pseudo-second-order kinetics (b) for photocatalytic degradation of CBZ by Mn₃O₄/C₃N₄-JMC

Sample	$S_{BET}(m^2 \cdot g^{-1})$	$V_{Total}(cm^3 \cdot g^{-1})$	D _p (nm)
1#	92.81	0.3288	7.1
2#	98.63	0.4558	9.2
3#	81.35	0.2825	6.3

Section 3: Tables

 Table S1 Pore texture parameters of the obtained samples

^a S_{BET}: BET specific surface area; S_{Micro}: micropore surface area; V_{Total}: total pore volume; V_{Micro}: micropore volume; D_p: average pore

Section 4: The study of drag force, resistance and working efficiency of micromotor catalyst

The drag force, resistance and working efficiency of the Mn_3O_4/C_3N_4 -JMC were studied. It is assumed that the drag force generated by the bubble breaking away from the catalyst surface is equal to the steady-state fluid power. Therefore, the speed and force of the catalyst under low Reynolds coefficient can be estimated by the following formula:

$$F_{drag} = 6\pi\mu\gamma\nu\tag{1}$$

 $\nu(m\cdot s^{-1})$ is the speed of micromotor catalyst motion, $\mu(mPa\cdot s)$ is fluid viscosity, and $\gamma(m)$ is distance traveled in a given amount of time.

The kinetic energy of the micromotor catalyst driven by bubbles is actually converted from the chemical energy generated by the decomposition of H_2O_2 by Mn_3O_4 . Therefore, the efficiency of the catalyst can be calculated by the following formula [1]:

$$\eta = P_{mecha} / P_{chem} \tag{2}$$

$$P_{mecha} = F_{drag} \cdot \nu = 6\pi\mu\gamma\nu^2 \tag{3}$$

$$P_{chem} = n \cdot \Delta r^{\theta} G \tag{4}$$

$$n = PV/RT \tag{5}$$

$$V = N \cdot 4\pi R_0^3 / 3 \tag{6}$$

 η is the efficiency of the catalyst, P_{mecha} is catalyst mechanical power (W·motor⁻¹), P_{chem} is chemical input power (W·motor⁻¹), which is equal to the chemical energy of all the gas produced, V is the volume of an ideal gas. n is mol of gas (mol), T is thermodynamic temperature of an ideal gas (K), N is the number of bubbles per second, R_o is the diameter of bubble (m) [2].

Notes and references

(1) W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes, J. Am. Chem. Soc. 133 (2011) 11862-11864.

(2) P. Kannan, T. Maiyalagan, E. Marsili, S. Ghosh, J. Niedziolka-Jonsson, M. Jonsson-Niedziolka, Hierarchical 3-dimensional nickel–iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing, Nanoscale 8 (2016) 843-855.