Supplementary Materials

AACVD Synthesized Tungsten Oxide-NWs loaded with Osmium oxide as Gas Sensor Array: Enhancing Detection with PCA and ANNs

Alejandro Santos-Betancourt ^{1,2,3}, Èric Navarrete ¹, Damien Cossement ⁴, Carla Bittencourt ⁵, and Eduard Llobet ^{1,2,3*}

¹ Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electrònica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain

² IU-RESCAT, Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira i Virgili, Joanot Martorell 15, 43480 Vila-seca, Spain

³ TecnATox - Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain

⁴ Materia Nova Research Center, Parc Initialis, Avenue Copernic 3, 7000 Mons, Belgium

⁵ Chimie des Interactions Plasma – Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Parc Initialis, Avenue Copernic 3, 7000 Mons, Belgium

* Corresponding author

Figure S1 shows (upper panel) an EDX analysis conducted on a sensor sample. The osmium loaded tungsten oxide film coats an alumina substrate. Peaks corresponding to the tungsten oxide film and the alumina substrate clearly appear. However, osmium is not detected. (lower panel) quantitative results of the microanalysis.

The experiment conditions were:

Live Time: 40.0 sec

Filter Fit Chi Squared:13.977 Errors: +/- 1 Sigma

Correction Method: Proza (Phi-Rho-Z) Acc.Voltage: 20.0 kV

Take Off Angle: 34.9 deg.

Element	Weight %	Weight % Error	Norm. Wt.%	Atom %	Formula	
С	2.53	± 0.04	2.53	11.32	С	
0	19.17	± 0.15	19.17	64.37	0	
AI	0.84	± 0.04	0.84	1.68	Al	
W	77.45	± 0.79	77.45	22.63	W	
Total	100.00		100.00	100.00		

Figure S1: EDX performed to a sensor sample consisting of WO₃ decorated with osmium.

Figure S2 shows the results of a different EDX analysis conducted on an osmium loaded tungsten oxide sample deposited on a TEM grid (lacey carbon film supported on nickel). Similarly to the previous EDX analysis performed on a sensor sample, this analysis is inconclusive for the presence of osmium in osmium-loaded samples.

Figure S2: EDX analysis performed to an WO₃ decorated with osmium deposited on a TEM grid.

On the use of ToF-SIMS to confirm the presence of osmium oxide in the samples

An XPS analysis of the different samples was performed. However, the amount of Os that loaded the tungsten oxide was found to be under the sensitivity of the XPS technique and this for the two types of samples produced. The calculated detection limit of Osmium by XPS is 1.5 ppm. Therefore, to evaluate the presence of Osmium, the ToF-SIMS technique was employed, which is more sensitive technique than XPS, as it enables detecting the presence of chemical species at trace levels, down to ppb concentrations. However, unlike XPS, the ToF-SIMS is a qualitative technique, which has enabled confirming the presence of Os in the loaded tungsten oxide samples, but that does not allow for a proper quantitative analysis of this loading. Additionally, the TOF-SIMS analyses were performed in *spectrometry mode* (not in *imaging mode*), with a lateral resolution of roughly 1-2 μ m. Therefore, it is not possible to determine the characteristic size and morphology of the Osmium clusters.

Figure S3: Measurements at 150° C of (up) EtOH, (middle) NO₂, and (down) H₂.

Figure S4: Measurements at 200° C of (up) EtOH, (middle) NO₂, and (down) H₂.

Table S1: Summary	of the statistics of sensor measurements.

Sensor	Gas	Temperature	Concentration [ppm]	Response Mean [%]	Response Error [%]	Abs. Error	Rel. Error
pure	NO ₂	250	0.25	-4749.6	1843.1	-0.24	-95.03
pure	NO ₂	250	0.5	-6364.0	1336.0	-0.26	-52.24
pure	NO ₂	250	0.75	-7970.8	825.4	-0.21	-27.45
pure	NO ₂	250	1	-8160.0	710.0	-0.21	-21.05
pure	H ₂	250	250	46.0	0.18	6.35	2.54
pure	H ₂	250	500	52.0	0.06	3.65	0.73
pure	H ₂	250	750	54.6	0.29	26.45	3.53
pure	H ₂	250	1000	56.8	0.40	47.00	4.70
pure	EtO H	250	5	67.8	3.1	2.47	49.35
pure	EtO H	250	10	73.2	2.0	2.99	29.88
pure	EtO H	250	15	75.9	1.6	3.45	23.00
pure	EtO H	250	20	77.1	1.2	3.43	17.13
WO ₃ OsLC	NO ₂	250	0.25	-667.4	239.8	-0.05	-19.16
WO ₃ OsLC	NO ₂	250	0.5	-2227.7	964.5	-0.13	-26.37
WO ₃ OsLC	NO ₂	250	0.75	-4728.7	1030.8	-0.11	-15.05
WO ₃ OsLC	NO ₂	250	1	-6779.3	592.4	-0.06	-5.54
WO ₃ OsLC	H ₂	250	250	62.2	0.76	27.71	11.09
WO₃OsLC	H ₂	250	500	66.9	0.71	47.60	9.52
WO₃OsLC	H ₂	250	750	69.8	0.71	68.86	9.18
WO ₃ OsLC	H ₂	250	1000	72.7	0.66	82.51	8.25
WO ₃ OsLC	EtO H	250	5	62.8	7.2	3.41	68.12
WO₃OsLC	EtO H	250	10	73.4	4.2	3.50	35.04
WO₃OsLC	EtO H	250	15	77.8	2.8	3.34	22.29
WO₃OsLC	EtO H	250	20	78.9	2.1	3.16	15.81
WO₃OsHC	NO ₂	250	0.25	-536.8	222.5	-0.03	-12.07
WO ₃ OsHC	NO ₂	250	0.5	-3298.1	2481.5	-0.19	-37.38
WO ₃ OsHC	NO ₂	250	0.75	-8228.1	4423.3	-0.24	-31.50
WO ₃ OsHC	NO ₂	250	1	-12681.6	3635.6	-0.15	-15.21
WO ₃ OsHC	H ₂	250	250	48.3	0.40	13.40	5.36
WO ₃ OsHC	H ₂	250	500	53.0	0.38	23.26	4.65
WO ₃ OsHC	H ₂	250	750	56.4	0.37	31.58	4.21

WO₃OsHC	H ₂	250	1000	60.0	0.37	40.86	4.09
WO ₃ OsHC	EtO	250	5	55.5	5.6	2.52	50.37
	н						
WO₃OsHC	EtO	250	10	65.3	3.9	3.07	30.68
	н						
WO ₃ OsHC	EtO	250	15	70.7	3.0	3.25	21.68
	н						
WO ₃ OsHC	EtO	250	20	72.9	2.1	2.85	14.27
	н						

Table S2: Summary of the performance of the classification algorithms.

Number	Number of	Activation	Accuracy	Accuracy	Working
hidden layers	neurons per layer	function	training [%]	test [%]	Temperature (° C)
3	10	Tanh	93.58	93.82	150
3	10	Sigmoid	92.91	92.09	150
3	10	ReLU	91.02	86.56	150
1	10	ReLU	90.16	86.70	150
1	100	ReLU	90.06	86.78	150
1	25	ReLU	89.66	88.11	150
2	10	ReLU	89.61	91.59	150
3	10	None	81.89	81.71	150
1	100	Tanh	91.56	91.60	200
1	100	Sigmoid	91.28	91.47	200
3	10	ReLU	88.99	85.91	200
1	100	ReLU	88.99	88.61	200
1	25	ReLU	88.81	88.58	200
2	10	ReLU	88.63	88.26	200
1	10	ReLU	87.98	87.58	200
1	100	None	86.82	85.55	200
1	10	Tanh	91.61	93.18	250
1	10	ReLU	91.38	92.26	250
1	100	ReLU	91.76	92.20	250
1	25	ReLU	91.46	91.97	250
3	10	ReLU	90.23	91.45	250
1	10	Sigmoid	91.93	90.91	250
2	10	ReLU	90.29	90.82	250
1	10	None	89.69	89.45	250

Table S3: Summary of the performance of the quantification models for nitrogen dioxide.

Number hidden layers	Number of neurons per layer	Activation function	RMSE training [ppb]	R-squared training	RMSE test [ppb]	R-squared test	Working Temperatur e (° C)
3	10	Tanh	0.09	0.90	0.07	0.94	150
1	100	ReLU	0.10	0.88	0.09	0.90	150
3	10	ReLU	0.10	0.89	0.09	0.89	150
1	25	ReLU	0.11	0.86	0.11	0.86	150
2	10	ReLU	0.10	0.87	0.11	0.86	150
3	10	Sigmoid	0.11	0.86	0.11	0.85	150
1	10	ReLU	0.12	0.84	0.12	0.85	150
3	10	None	0.20	0.55	0.20	0.57	150
1	100	ReLU	0.12	0.87	0.11	0.89	200
3	10	ReLU	0.12	0.86	0.11	0.88	200
2	10	ReLU	0.12	0.86	0.12	0.87	200
1	25	ReLU	0.14	0.83	0.12	0.85	200
1	10	ReLU	0.15	0.81	0.13	0.84	200
1	100	Tanh	0.14	0.81	0.14	0.82	200
1	100	Sigmoid	0.16	0.78	0.15	0.80	200
1	100	None	0.20	0.66	0.19	0.67	200
3	10	ReLU	0.07	0.94	0.08	0.94	250
3	10	Tanh	0.08	0.94	0.08	0.94	250
1	100	ReLU	0.08	0.93	0.08	0.94	250
2	10	ReLU	0.08	0.93	0.08	0.94	250

1	25	ReLU	0.08	0.93	0.08	0.94	250
3	10	Sigmoid	0.09	0.92	0.08	0.93	250
1	10	ReLU	0.09	0.92	0.09	0.92	250
3	10	None	0.14	0.81	0.13	0.84	250

Table S4: Summary of the performance of the quantification models for ethanol.

Number hidden layers	Number of neurons per layer	Activation function	RMSE training [ppm]	R-squared training	RMSE test [ppm]	R-squared test	Working Temperature (°C)
1	100	Tanh	1.65	0.94	1.33	0.96	150
1	100	Sigmoid	1.67	0.94	1.58	0.94	150
1	100	ReLU	1.89	0.92	1.71	0.93	150
3	10	ReLU	1.97	0.91	1.80	0.92	150
1	25	ReLU	2.46	0.87	2.26	0.88	150
2	10	ReLU	2.03	0.91	2.28	0.88	150
1	10	ReLU	2.92	0.82	3.02	0.80	150
1	100	None	5.53	0.36	5.44	0.35	150
3	10	Sigmoid	2.01	0.92	1.27	0.96	200
3	10	ReLU	1.86	0.93	1.58	0.94	200
3	10	Tanh	2.03	0.91	1.71	0.94	200
1	100	ReLU	2.00	0.92	1.80	0.93	200
3	10	ReLU	2.00	0.92	1.85	0.93	200
1	25	ReLU	2.21	0.90	2.04	0.91	200
1	10	ReLU	2.42	0.88	2.11	0.91	200
3	10	None	5.24	0.46	5.04	0.49	200
3	10	Tanh	2.32	0.89	1.64	0.94	250
3	10	ReLU	2.48	0.88	2.04	0.91	250
1	100	ReLU	2.38	0.89	2.15	0.90	250
1	25	ReLU	2.51	0.88	2.27	0.89	250
2	10	ReLU	2.55	0.87	2.39	0.88	250
3	10	Sigmoid	2.51	0.88	2.59	0.87	250
1	10	ReLU	2.73	0.86	2.62	0.86	250
3	10	None	4.99	0.53	4.99	0.51	250

Table S5: Summary of the performance of the quantification models for hydrogen.

Number hidden layers	Number of neurons per layer	Activation function	RMSE training [ppm]	R-squared training	RMSE test [ppm]	R-squared test	Working Temperatur e (° C)
1	100	ReLU	104.33	0.90	95.81	0.91	150
2	10	ReLU	98.40	0.91	100.97	0.90	150
3	10	ReLU	97.64	0.91	105.70	0.89	150
1	25	ReLU	105.83	0.89	113.01	0.88	150
1	100	Tanh	123.15	0.86	128.10	0.84	150
1	100	Sigmoid	134.10	0.83	134.77	0.83	150
1	10	ReLU	138.01	0.82	140.21	0.81	150
1	100	None	253.72	0.41	250.01	0.42	150
1	100	ReLU	96.48	0.92	107.92	0.90	200
1	25	ReLU	108.21	0.90	112.29	0.89	200
2	10	ReLU	107.88	0.90	120.72	0.87	200
1	100	Sigmoid	104.76	0.90	120.72	0.87	200
3	10	ReLU	99.87	0.91	122.56	0.87	200
1	10	ReLU	115.44	0.88	130.57	0.85	200
1	100	Tanh	152.04	0.80	154.29	0.80	200
1	100	None	250.28	0.47	249.59	0.47	200
1	100	ReLU	76.19	0.94	85.57	0.93	250
1	100	Sigmoid	72.78	0.95	87.76	0.93	250
2	10	ReLU	74.55	0.95	91.84	0.92	250
1	25	ReLU	77.93	0.94	92.14	0.92	250
3	10	ReLU	74.79	0.95	94.41	0.92	250

1	100	Tanh	95.87	0.91	94.74	0.92	250
1	10	ReLU	79.49	0.94	95.32	0.92	250
1	100	None	255.43	0.42	259.19	0.42	250

Figure S6: Results of classification and quantification models when using test dataset at 200° C. (a) Classification. (b) NO₂ quantification. (c) H₂ quantification. (d) EtOH quantification.

Figure S7: Results of classification and quantification models when using test dataset at 150° C. (a) Classification. (b) NO₂ quantification. (c) H₂ quantification. (d) EtOH quantification.

Table S6: Relationship betwee	n classification accuracy and	I working temperature of the sensors.
-------------------------------	-------------------------------	---------------------------------------

Working Temperature (° C)	Classifying NO₂ (%)	Classifying EtOH (%)	Classifying H₂ (%)
150	96.0	81.4	73.5
200	96.1	89.4	82.2
250	95.2	90.1	86.9

Table S7: Summar	y of the best	quantification	models for EtOH,	NO ₂	, and H ₂ at three tem	peratures.
------------------	---------------	----------------	------------------	-----------------	-----------------------------------	------------

Gas	Temperature [°	RMSE train [ppm]	R-squared train	RMSE test [ppm]	R-squared test
	C]				
	150	1.65	0.94	1.33	0.96
EtO	200	2.01	0.92	1.27	0.96
Н	250	2.32	0.89	1.64	0.94
	150	0.09 × 10 ⁻³	0.90	0.07 × 10 ⁻³	0.94
NO ₂	200	0.12 × 10 ⁻³	0.87	0.11 × 10 ⁻³	0.89
	250	0.07 × 10 ⁻³	0.94	0.08 × 10 ⁻³	0.94
	150	104.33	0.90	95.81	0.91
H ₂	200	96.48	0.92	107.92	0.90
	250	76.19	0.94	85.57	0.93

Table S8: Comparative between gas-sensing application metrics found in the literature and metrics of this work ¹:

Algorithm	Application	Metrics	Reference
			S
SVM	Drift compensation, Classification	Accuracy: 89.98 % – 96.62 %	2,3

ANN	Classification	Accuracy: 91.26%	2
XGBoost	Classification	Accuracy: 96.62 %	2,4
		Sensitivity: 95.60 %	
KNN	Drift compensation	Accuracy: 80.74 % – 97.5 %	2,5,6
KNN-ANN	Drift suppressed	Accuracy: 96.51 %	7
	classification		
PLS	Gas concentration	RMSE: 7.34	8,9
	prediction		
ACNN	Drift compensation	Accuracy increased over 30% worst	10
		case	
MLPNN	Gas concentration	Error decreased 7 % – 19 % worst	11
	estimation	case	
Deep CNN	Real-time	Accuracy: 98.1 %	12
	classification		
CNN ensemble	Classification	Accuracy: 99.72 %	13
PCA and ANN	Discrimination and	Accuracy: 96.1 % *	This work
	Quantification	R-squared: 0.96 *	
		RMSE: 0.07 ppb *	

*Best case

References

- 1 Md. S. I. Sagar, N. R. Allison, H. M. Jalajamony, R. E. Fernandez and P. K. Sekhar, *J Electrochem Soc*, 2022, **169**, 127512.
- 2 T. Matthews, M. Iqbal and H. Gonzalez-Velez, in 2018 IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies (BDCAT), IEEE, 2018, pp. 61–70.
- 3 T. Liu, D. Li, J. Chen, M. Wu and Y. Chen, in *2018 5th International Conference on Systems and Informatics (ICSAI)*, IEEE, 2018, pp. 417–423.
- 4 K. Chen, L. Liu, B. Nie, B. Lu, L. Fu, Z. He, W. Li, X. Pi and H. Liu, *Comput Biol Med*, 2021, **131**, 104294.
- 5 C. Deng, K. Lv, D. Shi, B. Yang, S. Yu, Z. He and J. Yan, *Sensors*, 2018, **18**, 1909.
- 6 Z. Jiang, P. Xu, Y. Du, F. Yuan and K. Song, *Sensors*, 2021, **21**, 3403.
- 7 M. Abbatangelo, E. Núñez-Carmona, V. Sberveglieri, E. Comini and G. Sberveglieri, *Chemosensors*, 2020, **8**, 6.
- L. Wozniak, P. Kalinowski, G. Jasinski and P. Jasinski, *Microelectronics Reliability*, 2018, 84, 163–169.
- J. Burgués, M. D. Esclapez, S. Doñate and S. Marco, *iScience*, 2021, **24**, 103371.
- 10 L. Feng, H. Dai, X. Song, J. Liu and X. Mei, *Sens Actuators B Chem*, 2022, **351**, 130986.
- 11 J. Wang, S. Lian, B. Lei, B. Li and S. Lei, *Sens Actuators A Phys*, 2022, **335**, 113392.
- 12 M. Kang, I. Cho, J. Park, J. Jeong, K. Lee, B. Lee, D. Del Orbe Henriquez, K. Yoon and I. Park, ACS Sens, 2022, **7**, 430–440.
- 13 S. Chaudhri and N. Rajput, *IEEE Sens Lett*, 2022, 6, 1–4.