Supporting Information

"Iodine/DMSO-Catalyzed Oxidative Deprotection of *N*-Tosylhydrazone for Benzoic Acid Synthesis"

Rakshanda Singhal^a, Manish K. Mehra^b, Babita Malik^a, Meenakshi Pilania^{*a}

^{a*}Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan,
Off Jaipur-Ajmer Express Way, Jaipur (Rajasthan), India 303007
<u>meenakshi.pilania@jaipur.manipal.edu</u>

^{b*}Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031 India. Current address: The Wistar Institute, Philadelphia, PA, 19104 USA

Table of Contents

1.	General information	S2
2.	Experimental procedures	S2
3.	Characterization data for target compounds	S3—S4
4.	Copies of ¹ H and ¹³ C NMR spectra	S5 — S20
5.	LCMS Spectra of crude reaction mixture of 1b	S21
6.	References	S21

1. General information

All substrates and reagents were commercially available and used without further purification. All reagents were weighed and handled in air at room temperature. ¹H spectra were recorded in CDCl₃ or DMSO- d_6 on 400 MHz NMR spectrometers and resonances (δ) are given in parts per million (ppm) relative to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃ or DMSO- d_6 on 100 MHz NMR spectrometers and resonances (δ) are given in ppm. High-resolution mass spectra (HRMS) further measured for some of the compounds. Melting points were determined using lab melting point apparatus.

2. Experimental procedure

2.1 General procedure for the synthesis of N-tosylhydrazones (1)

A mixture of aryl or heteroaryl aldehydes (9.42 mmol) and tosylhydrazine (9.42 mmol) was added to a round bottomed flask in methanol (8 mL). The mixture was heated at 60 °C for 0.5 to 3 h to obtain the corresponding *N*-tosylhydrazones as white precipitate, which was filtered off and washed with diethyl ether (5 mL \times 3) and dried under vacuum to obtain pure compound.

2.2 General procedure for the synthesis of benzoic acid (2)

A mixture of *N*-tosylhydrazone **1** (0.364 mmol) and iodine (0.546 mmol) in DMSO (1.5 mL) was stirred at 100°C for 1 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature. The mixture was then quenched with an aqueous saturated solution of $Na_2S_2O_3$ (5 mL) and organic phase was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure to get a solid compound. Obtained solid was washed with hexane and dried under high vacuum to the get pure desired product **2** in 85-95% yield.

3. Characterization data for target compounds

Benzoic acid (2a)¹⁻³: Yield 87%, white solid, melting point 120-122°C, ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.00 (m, 2H), 7.59 – 7.51 (m, 1H), 7.42 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.03, 133.83, 130.23, 129.30, 128.51.

4-Methylbenzoic acid (2b) ¹⁻³: Yield 88%, yellowish solid, melting point 181-182°C, ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.79 (s, 1H), 7.85 (d, *J* = 7.9 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.81, 143.46, 129.69 (d, *J* = 23.5 Hz), 21.57.

4-Methoxybenzoic acid (2c)¹⁻³: Yield 83%, yellowish solid, melting point 183-184°C, ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.63 (s, 1 H), 7.89 (d, *J*= 8.8 Hz, 2 H), 7.02 (d, *J*= 8.8 Hz, 2 H), 3.82 (s, 3 H); ¹³C NMR (100 MHz, DMS-*d*₆) δ 167.5, 163.3, 131.8, 123.5, 114.3, 55.9.

4-(Methylthio)benzoic acid (2d) ¹⁻³: Yield 96%, white solid, melting point 191-195°C, ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.84 (s, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 2.55 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.53, 145.25, 130.18, 127.19, 125.30, 14.41.

4-Isopropylbenzoic acid (2e))¹⁻³: ¹H NMR (400 MHz, DMSO- d_6) δ 12.81 (s, 1 H), 7.86 (d, J = 8.4 Hz, 2 H), 7.36 (d, J = 8.0 Hz, 2 H), 3.01 - 2.90 (m, 1 H), 1.21 (d, J = 6.8 Hz, 6 H); ¹³C NMR (100 MHz, DMSO- d_6) δ 167.8, 154.1, 130.0, 128.9, 127.0, 34.0, 24.1.

3-Methoxybenzoic acid (2f) ¹⁻³: Yield 87%; white solid; melting point 103-108°C, ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dt, *J* = 7.6, 1.3 Hz, 1H), 7.63 (dd, *J* = 2.7, 1.5 Hz, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.16 (ddd, *J* = 8.3, 2.7, 1.0 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.94, 159.62, 130.62, 129.55, 122.70, 120.48, 114.39, 55.48.

4-Fluorobenzoic acid (2g) ¹⁻³: Yield 92%, white solid; melting point 182-186°C, ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 – 7.88 (m, 2H), 7.47 (dd, J = 8.2, 6.6 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 166.9, 164.2, 132.7, 127.9, 116.2.

4-Chlorobenzoic acid (2h) ¹⁻³: Yield 85%, white solid, melting point 234-242°C ¹_,¹H NMR (400 MHz, DMSO-*d*₆) δ 8.10 – 7.90 (m, 2H), 7.55 – 7.34 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.93, 139.24, 131.17, 128.97, 128.56.

4-Bromobenzoic acid (2i)¹⁻³: Yield 89%, white solid, melting point 251-252°C, ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.19 (s, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.1, 132.14, 131.75, 130.47, 127.34.

4-Nitrobenzoic acid (2j) ¹⁻³: Yield 65%, white solid, melting point 236-238°C, ¹H NMR (400 MHz, DMSO- d_6) δ 13.65 (s, 1H), 8.34 – 8.25 (m, , J = 8.8 Hz, 2H), 8.20 – 8.10 (m, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 166.25, 150.45, 136.84, 131.13, 124.13.

4-Cyanobenzoic acid (2k) ¹⁻³: Yield 88%, white solid, melting point 214-220°C, ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.58 (s, 1H), 8.11 – 8.05 (m, 2H), 8.02 – 7.95 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.53, 135.32, 133.15, 130.39, 118.66, 115.53.

3-Nitrobenzoic acid (2I) ¹⁻³: Yield 87%, yellowish solid, melting point 140-142°C; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (t, *J* = 2.0 Hz, 1H), 8.43 – 8.33 (m, 2H), 7.63 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.58, 148.34, 135.71, 131.56, 125.10.

3-(Methoxycarbonyl)benzoic acid (2l'): Yield 92%, ¹H NMR (400 MHz, DMSO-d⁶) δ 13.31 (s, 1H), 8.47 (t, *J* = 1.6 Hz, 1H), 8.21 – 8.14 (m, 2H), 7.65 (t, *J* = 7.8 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, DMSO- *d*₆) δ 166.9, 166.0, 134.2, 133.6, 131.8, 130.5, 130.2, 129.7, 52.8.

2-Hydroxybenzoic acid (2m) ¹⁻³: Yield 88%; yellowish solid; melting point 158-160 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.32 (bs, 2H), 7.79 (dd, *J* = 7,9 Hz, 1.8 Hz 1H), 7.51 (distorted td, 1H), 6.96 – 6.90 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.1, 161.3, 135.8, 130.4, 119.3, 117.2, 112.9.

4-Hydroxybenzoic acid (2n) ¹⁻³: Yield 73%, yellowish solid, melting point 213-217°C , ¹H NMR (400 MHz, DMSO-*d₆*) δ 12.42 (s, 1 H), 10.21 (s, 1 H), 7.78 (d, *J* = 8.8 Hz, 2 H), 6.82 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d₆*) δ 167.7, 162.1, 132.0, 121.8, 115.6.

Thiophene-2-carboxylic acid (20) ¹⁻³: Yield 93%, yellowish solid; melting point 135-145°C, ¹H NMR (400 MHz, DMSO- d_6) δ 13.07 (s, 1H), 7.89-7.73 (dd, 1H), 7.73 (dd, 1 H), 7.18 (dd, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.4, 135.1, 133.8, 133.7, 128.7.

Benzoic acid(2a)

4-Methylbenzoic acid (2b)

4-Methoxybenzoic acid (2c)

4-(Methylthio)benzoic acid (2d)

4-Isopropylbenzoic acid (2e)

3-Methoxy benzoic acid (2f)

4-Fluorobenzoic acid (2g)

4-Chlorobenzoic acid (2h)

4-Bromobenzoic acid (2i)

4-Nitro benzoic acid (2j)

4-Cyanobenzoic acid (2k)

3-Nitrobenzoic acid (2I)

3-(Methoxycarbonyl)benzoic acid (2l')

2-Hydroxybenzoic acid (2m)

Thiophene-2-carboxylic acid (2o)

5. LCMS Spectra of crude reaction mixture of 1b

LCMS spectra for crude reaction mixture of reaction of **1b** under optimized conditions confirmed the release of *p*-toluenesulfinic acid confirmed by LCMS.

5. References

- 1. H. Yu, S. Ru, G. Dai, Y. Zhai, H. Lin, S. Han and Y. Wei, *Angew. Chem. Int. Ed.*, 2017, **56**, 3867-3871.
- 2. H. P. Kalmode, K. S. Vadagaonkar, S. L. Shinde and A. C. Chaskar, *J. Org. Chem.*, 2017, **82**, 3781-3786.
- 3. K.-J. Liu, Y.-L. Fu, L.-Y. Xie, C. Wu, W.-B. He, S. Peng, Z. Wang, W.-H. Bao, Z. Cao and X. Xu, ACS Sustain. Chem. Eng., 2018, **6**, 4916-4921.