Supplementary Information (SI) for RSC Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary Information for

Megastigmanes isolated from Boehmeria nivea leaves and their immunomodulatory activity on IL-1 β and IL-10 production in raw 264.7 macrophages

Thao Thi Thu Nguyen ^{a,b}, Vy Anh Tran^c, Thi Hien Tran^d, Viet Duc Ho^e, Do Thi Ha^f, Truong Quoc Ky^g, Minh Quan Pham ^{h,k}, Le Thi Hong Van^{*a}

^a Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam

^b University of Health Sciences, Vietnam National University Ho Chi Minh City, Vietnam

^c Department of Material Science, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

^d Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine Lund University, Lund 22002, Sweden

^e Faculty of Pharmacy, Hue University of Medicine and Pharmacy, 06 Ngo Quyen, Hue University, Hue City, Vietnam

^f Department of Medical Plant Chemistry, National Institute of Medicinal Materials, Hanoi

^g Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh city, Vietnam

^h Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam

^k Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

*Corresponding author: levan@ump.edu.vn

Table of Contents

Figure S1.	ECD spectra of 1 in MeOH	1
Figure S2.	ECD spectra of experimental 1 and calcd for 4 isomers B3LYP 6-31G(d,p) IEFPCM MeOH	1
Figure S3.	Optimized conformers of compounds 1a-1d with DFT/B3LYP/6-31G(d) in gas phase	5
Figure S4.	DP4+ probability analysis of 4 isomers (1a-1d) at mPW1PW91/6-31+G(d,p) level of theory using	
PCM solvent m	nodel in CDCl ₃	6
Figure S5.	DP4+ probability analysis of 4 isomers (1a-1d) at mPW1PW91/6-311G(d.p) level of theory using	
PCM solvent m	nodel in CDCl ₃	6
Figure S6.	HR-MS spectrum of 1	7
Figure S7.	¹ H-NMR spectrum of 1 in CDCl ₃ . 600 MHz	7
Figure S8.	¹ H-NMR spectrum of 1 from 3.0 to 6.0 ppm region	8
Figure S9.	¹ H-NMR spectrum of 1 from 0.5 to 2.6 ppm region	8
Figure S10.	¹³ C-NMR spectrum of 1 in CDCl ₃ 150 MHz	9
Figure S11.	¹³ C-NMR spectrum of 1 from 15 to 80 ppm region	9
Figure S12.	DEPT spectrum of 1	10
Figure S13.	HSQC spectrum of 1	11
Figure S14.	HSQC spectrum of 1 from 3.0 – 6.0 and 60 – 115 ppm region	12
Figure S15.	HSQC spectrum of 1 from 0 – 4.0 and 20 – 65 ppm region	13
Figure S16.	HMBC spectrum of 1	14
Figure S17.	HMBC spectrum of 1 from 3.5 – 6.0 and 20 – 80 ppm region	15
Figure S18.	HMBC spectrum of 1 from 3.0 - 6.0 and 100-170 ppm region	16
Figure S19.	HMBC spectrum of 1 from 0.8 -2.8 and 120-200 region	17
Figure S20.	HMBC spectrum of 1 from 0.8-2.6 and 15-80 ppm region	18
Figure S21.	COSY spectrum of 1	19
Figure S22.	COSY spectrum of 1 from 1.0 to 4.0 ppm region	19
Figure S23.	¹³ C-NMR spectrum of 1 in CD ₃ OD.150 MHz	20
Figure S24.	Determination of monosaccharide compositions of 1 by GC/MS	21
Figure S25.	MS spectrum of 2	23
Figure S26.	¹ H-NMR spectrum of 2 in CD ₃ OD. 600 MHz	23
Figure S27.	¹ H-NMR spectrum of 2 from 3.1 – 4.4 and 5.82 – 5.90 ppm region	24
Figure S28.	¹ H-NMR spectrum of 2 from 1.0 to 2.7 ppm region	24
Figure S29.	¹³ C -NMR spectrum of 2 in CD ₃ OD. 150 MHz.	25
Figure S30.	¹³ C -NMR spectrum of 2 fro 19.5 to 80 ppm region	25
Figure S31.	MS spectrum of 3	26
Figure S32.	¹ H-NMR spectrum of 3 in CD ₃ OD	26
Figure S33.	¹³ C-NMR spectrum of 3 in CD ₃ OD	27
Figure S34.	DEPT spectrum of 3	27
Figure S35.	MS spectrum of 4	28
Figure S36.	¹ H-NMR spectrum of 4 in CD ₃ OD	28
Figure S37.	¹ H-NMR spectrum of 4 from 3.0–4.5 and 5.6–6.0 ppm region	29
Figure S38.	¹³ C-NMR spectrum of 4 in CD ₃ OD	29
Figure S39.	MS spectrum of 5	30
Figure S40.	¹ H-NMR spectrum of 5 in CD ₃ OD	30
Figure S41.	¹ H-NMR spectrum of 5 from 4.1 to 6.2 ppm region	31
Figure S42.	¹ H-NMR spectrum of 5 from 3.0 to 4.35 ppm region	31
Figure S43.	¹ H-NMR spectrum of 5 from 0.9 to 2.35 ppm region	32
Figure S44.	¹³ C-NMR spectrum of 5	32
Figure S45.	¹³ C-NMR spectrum of 5 from 62 to 81 ppm region	33
Figure S46.	¹³ C-NMR spectrum of 5 from 19 to 53 ppm region	33
Figure S47.	DEPT spectrum of 5	34
Figure S48.	MS spectrum of 6	34
Figure S49.	¹ H-NMR spectrum of 6 in CDCl ₃	35
Figure S50.	¹ H-NMR spectrum of 6 from 3.0 to 7.0 ppm region	35
Figure S51.	¹ H-NMR spectrum of 6 from 0.8 to 2.9 ppm region	36
Figure S52.	¹³ C-NMR spectrum of 6 in CDCl ₃	36
Figure S53.	MS spectrum of 7	37

Figure S54.	¹ H-NMR spectrum of 7 in CD ₃ OD	37
Figure S55.	. ¹ H-NMR spectrum of 7 from 4.2 to 5.9 ppm region	38
Figure S56.	¹ H-NMR spectrum of 7 from 3.1 to 3.9 ppm region	38
Figure S57.	¹ H-NMR spectrum of 7 from 0.7 to 2.15 ppm region	39
Figure S58.	¹³ C-NMR spectrum of 7 in CD ₃ OD	39
Figure S59.	¹³ C-NMR spectrum of 7 from 61 to 86 ppm region	40
Figure S60.	¹³ C-NMR spectrum of 7 from 19 to 53 ppm region	40
Figure S61.	DEPT spectrum of 7	41
Figure S62.	MS spectrum of 8	.41
Figure S63.	¹ H-NMR spectrum of 8 in CD ₃ OD	42
Figure S64.	¹ H-NMR spectrum of 8 from 4.0 to 5.4 ppm region	42
Figure S65.	¹ H-NMR spectrum of 8 from 3.05 to 3.95 ppm region	43
Figure S66.	¹ H-NMR spectrum of 8 from 0.9 to 2.4 ppm region	43
Figure S67.	¹³ C-NMR spectrum of 8 in CD ₃ OD	44
Figure S68.	¹³ C-NMR spectrum of 8 from 59 to 88 ppm region	44
Figure S69.	¹³ C-NMR spectrum of 8 from 26 –to 48 ppm region	45
Figure S70.	DEPT spectrum of 8	45
Figure S71.	MS spectrum of 9	46
Figure S72.	¹ H-NMR spectrum of 9 in CD ₃ OD	46
Figure S73.	¹ H-NMR spectrum of 9 from 3.8 to 5.9 ppm region	47
Figure S74.	¹ H-NMR spectrum of 9 from 1.0 to 3.7 ppm region	47
Figure S75.	¹³ C-NR spectrum of 9 in CD ₃ OD	48
Figure S76.	¹³ C-NMR spectrum of 9 from 20 to 80 ppm region	48
Figure S77.	DEPT spectrum of 9	.49

Table S1. Effects of megastigmane compounds on pro-inflammatory c	cytokine (I	L-16)	50
Table S2. Effects of megastigmane compounds on anti-inflammatory of	cytokine (IL-10))50

Figure S2. ECD spectra of experimental **1** and calcd for 4 isomers B3LYP_6-31G(d,p)_IEFPCM_MeOH

Figure S3. Optimized conformers of compounds 1a-1d with DFT/B3LYP/6-31G(d) in gas phase

	Settings Default		Tyj S	be of data hielding te	(shifts) Insors	
Funct mPW1	tional IPW91	Solv P(rent? CM	6-	Basis Set 31+G(d,p)	
	Isomer Nº	î	1	2	3	4
	isomer n-	H data	0.08%	0.01%	0.07%	99.83%
DP4-	+ (%)	C data	34.22%	0.00%	65.78%	0.00%
		All data	37.37%	0.00%	62.63%	0.00%
Туре	sp2?	Ехр	1	2	3	4
		isom 6R9	ner 1 is R (a) 6	somer 2 R9S (b)	isomer 3 6S9R (c)	isomer 4 6S9S (d)
Default	paramet <u>er</u>	s 1		2	3	4
sDP4-	(H data)	J. 0.12	2% 🗐 0	.11%	0.09%	99.68%
sDP4-	+ (C data)	47 1	1% 10	05%	52 84%	
cDD/1	(all data)	5/ 3	5%	05%	14 34%	1 25%
SDP4+ (all uata)		J4.J		200/	44.54%	1.25%
uDP4+ (H data)		26.2	5% 3	.39%	31.46%	38.91%
uDP4+ (C data)		36.8	5% 0	.00%	63.15%	0.00%
uDP4+ (all data)		32.7	4% 📶 0	.00%	67.26%	0.00%
DP4+ (H data)		0.08	3% 📶 0	.01%	0.07%	4 99.83%
DP4+ (C data)		34.2	2% 🚽 0	.00%	4 65.78%	0.00%
DP4+ (all data)		37.3	7% 📄 0	.00%	62.63%	0.00%
	Settings Default		Ty S	oe of data hielding te	(shifts) nsors	
Functional mPW1PW91		So N PC	ent? CM	6-	Basis Set 311G(d,p)	
lsomer №			1	2	3	4
DP4+ (%)		H data	0.02%	0.45%	99.53%	0.00%
		Cdata	0.03%	0.03%	99.93%	0.00%
		All data	0.00%	0.00%	100.00%	0.00%
lype	sp2?	Exp	1	2	3	4

Figure S4. DP4+ probability analysis of 4 isomers (**1a-1d**) at mPW1PW91/6-31+G(d,p) level of theory using PCM solvent model in $CDCl_3$

	isomer 1	isomer 2	isomer 3	isomer 4
	6R9R (a)	6R9S(b)	6S9R(c)	6S9S (d)
Default parameters	1	2	3	4
sDP4+ (H data)	1.77%	9.47%	86.39%	2.37%
sDP4+ (C data)	0.63%	0.63%	98.54%	0.20%
sDP4+ (all data)	0.01%	0.07%	99.91%	0.01%
uDP4+ (H data)	0.88%	3.96%	95.12%	0.05%
uDP4+ (C data)	4.85%	4.85%	89.91%	0.38%
uDP4+ (all data)	0.05%	0.22%	99.73%	0.00%
DP4+ (H data)	1 0.02%	0.45%	4 99.53%	0.00%
DP4+ (C data)	1 0.03%	0.03%	4 99.93%	0.00%
DP4+ (all data)	0.00%	0.00%	100.00 %	0.00%

Figure S5. DP4+ probability analysis of 4 isomers (**1a-1d**) at mPW1PW91/6-311G(d,p) level of theory using PCM solvent model in $CDCl_3$

Figure S7. ¹H-NMR spectrum of **1** in CDCl₃. 600 MHz

Figure S8. ¹H-NMR spectrum of **1** from 3.0 to 6.0 ppm region

Figure S9. ¹H-NMR spectrum of **1** from 0.5 to 2.6 ppm region

Figure S10. ¹³C-NMR spectrum of **1** in CDCl_{3.} 150 MHz

Figure S11. ¹³C-NMR spectrum of **1** from 15 to 80 ppm region

Figure S13. HSQC spectrum of 1

Figure S14. HSQC spectrum of $\mathbf{1}$ from 3.0 – 6.0 and 60 – 115 ppm region

Figure S15. HSQC spectrum of $\mathbf{1}$ from 0 – 4.0 and 20 – 65 ppm region

Figure S16. HMBC spectrum of 1

Figure S17. HMBC spectrum of **1** from 3.5 – 6.0 and 20 – 80 ppm region

Figure S18. HMBC spectrum of 1 from 3.0 - 6.0 and 100-170 ppm region

Figure S19. HMBC spectrum of 1 from 0.8 -2.8 and 120-200 region

Figure S20. HMBC spectrum of 1 from 0.8-2.6 and 15-80 ppm region

Figure S22. COSY spectrum of 1 from 1.0 to 4.0 ppm region

Figure S23. ¹³C-NMR spectrum of **1** in CD₃OD.150 MHz

GC/MS chromatography

Figure S24. Determination of monosaccharide compositions of **1** by GC/MS **(a)** D-glucose derivative (b) **1** derivative

Method:

Alditol per-acetate derivatives were prepared by the method reported by Ho DV which slightly modifying the method reported by Pettolino et al. Compound 1 (2 mg) were hydrolyzed with 4 M trifluoroacetic acid (1 mL) in a sealed tube at 105 °C for 4 h. After cooling, the reaction mixture was diluted with 4 mL water and extracted with dichloromethane (2 mL×3 times). The aqueous layer wasevaporated with methanol under reduced pressure. The residue was then dissolved in deionized water (1 mL) and incubated with sodium borohydride (33 mg) at 40 °C for 90 mins. After reduction, three drops of glacial acetic acid were slowly added to the tube to destroy any excess NaBH₄. The mixture was dissolved in 2 mL of methanol–glacial acetic acid (95:5, v/v) and evaporated in vacuo. This step was repeated three times to remove the boric acid completely. The obtained alditols were acetylated with 1 mL of acetic anhydride-pyridine (1:1, v/v) at 110 °C for 3 h. After cooling to room temperature, the acetylation mixture was diluted with 4 mL water and partitioned with dichloromethane (2 mL×2 times). The combined dichloromethane extract was washed with 5 mL water (three times) and then placed in a heating block (37 °C), to yield the alditol per-acetate derivatives as pale yellow oil. The resulting derivatives were analyzed by GC/MS with an Equity[®]-5 (Supelco) capillary column (30 m×0.25 mm i.d.). Helium was used as the carrier gas, at a flow rate of 1.2 mL/min. The column, injector, and detector were set at 80, 220, and 230 °C, respectively. The oven temperature was programmed as follows: initially, 80 °C for 2 min, increased to 180 °C at 10 °C/min and held at 180 °C for 2 min, increased to 220 °C at 2 °C/min and held at 220 °C for 5 min, further increased to 240 °C at 5 °C/min and held for 5 min at the final temperature. The monosaccharide present in 1 was confirmed to be D-glucose by comparing the retention times of the alditol per-acetate derivatives with the corresponding derivatives prepared from standard sugars (D-glucose) under the same conditions.

Figure S26. ¹H-NMR spectrum of **2** in CD₃OD. 600 MHz

Figure S27. ¹H-NMR spectrum of **2** from 3.1 - 4.4 and 5.82 - 5.90 ppm region

Figure S28. ¹H-NMR spectrum of **2** from 1.0 to 2.7 ppm region

Figure S29. 13 C -NMR spectrum of **2** in CD₃OD. 150 MHz

Figure S30. ¹³C -NMR spectrum of **2** fro 19.5 to 80 ppm region

Figure S31. MS spectrum of 3

Figure S32. ¹H-NMR spectrum of **3** in CD_3OD

Figure S34. DEPT spectrum of 3

Figure S36. ¹H-NMR spectrum of **4** in CD₃OD

Figure S37. ¹H-NMR spectrum of **4** from 3.0–4.5 and 5.6–6.0 ppm region

Figure S38. ¹³C-NMR spectrum of **4** in CD_3OD

BN10.7.2.11 (Staphylionoside H)

Figure S40. ¹H-NMR spectrum of **5** in CD₃OD

Figure S41. ¹H-NMR spectrum of **5** from 4.1 to 6.2 ppm region

BN10.7.2.11 (Staphylionoside H)

Figure S42. ¹H-NMR spectrum of **5** from 3.0 to 4.35 ppm region

BN10.7.2.11 (Staphylionoside H)

Figure S43. ¹H-NMR spectrum of **5** from 0.9 to 2.35 ppm region

BN10.7.2.11 (Staphylionoside H)

Figure S44. ¹³C-NMR spectrum of 5

Figure S46. ¹³C-NMR spectrum of **5** from 19 to 53 ppm region

Figure S47. DEPT spectrum of 5

Figure S49. ¹H-NMR spectrum of **6** in CDCl₃

Figure S50. ¹H-NMR spectrum of **6** from 3.0 to 7.0 ppm region

Figure S51. ¹H-NMR spectrum of **6** from 0.8 to 2.9 ppm region

Figure S53. MS spectrum of 7

BN10.7.2.14 (Crotalionosid C)

Figure S55. . ¹H-NMR spectrum of **7** from 4.2 to 5.9 ppm region

BN10.7.2.14 (Crotalionosid C)

Figure S57. ¹H-NMR spectrum of **7** from 0.7 to 2.15 ppm region

Figure S59. ¹³C-NMR spectrum of **7** from 61 to 86 ppm region

Figure S61. DEPT spectrum of 7

Figure S63. ¹H-NMR spectrum of **8** in CD₃OD

AND AND AND A

Figure S69. ¹³C-NMR spectrum of **8** from 26 –to 48 ppm region

BN10.10.16 (Officinosid B)

600 700 800 900 1000 Observed mass [m/z]

657.35026

265.14972

0-

BN10.10.14 5,8–epoxymegastigman–6–ene–3–one 9–Ο–β–D glucopyranosid

Figure S72. ¹H-NMR spectrum of **9** in CD₃OD

BN10.10.14

Figure S75. ¹³C-NR spectrum of **9** in CD₃OD

Figure S77. DEPT spectrum of 9

	IL-16 Concentration (pg/mL)							
No	3	2	6	1	Hydroxytyrosol 4–	DMSO	LPS	
					β –⊳–glucoside			
1	86.01	66.29	67.10	93.33	91.62	170.75	490.47	
2	65.96	65.75	58.91	80.65	101.90	139.71	475.22	
3	75.76	83.92	61.57	96.45	88.96	142.68	451.49	
4	58.06	68.80	74.89	85.35	91.75	157.16	523.01	
5	74.67	72.04	54.86	94.68	96.01	155.08	389.03	
Mean	72.09	71.36	63.47	90.09	94.05	153.08	465.84	
SE	4.73	3.33	3.48	3.03	2.26	5.57	22.44	

Table S1. Effects of megastigmane compounds on pro-inflammatory cytokine (IL-16)

Table S2. Effects of megastigmane compounds on anti-inflammatory cytokine (IL-10)

	IL–10 Concentration (pg/mL)						
No	3	2	6	1	Hydroxytyrosol	DMSO	LPS
					4-6 -р-		
					glucoside		
1	279.26	198.76	237.82	268.63	176.19	150.38	100.63
2	297.14	176.27	263.26	184.14	164.97	133.85	122.60
3	219.63	185.47	313.10	258.87	166.77	123.62	112.50
4	260.10	189.79	297.60	197.65	165.90	145.51	93.96
5	246.12	204.29	225.70	181.38	162.10	132.50	97.40
Mean	260.45	190.92	267.49	218.14	167.19	137.17	105.42
SE	16.15	5.84	19.43	18.14	1.01	4.49	6.68