Supporting Information

Computational insights into the physco-chemical properties of pure and single-atom copper-indium sub-nanometre clusters: a DFTgenetic algorithm approach

Norah O. Alotaibi¹, Heider A. Abdulhussein^{2,3}*, Shatha M. Alamri¹, Noorhan Ali Hamza⁴, Abbas H. Abo Nasria⁵

¹Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

²Department of Chemistry, Faculty of Science, University of Kufa, Najaf, Iraq

³College of Engineering, University of Warith Al-Anbiyaa, Kerbala, Iraq

⁴Department of Chemistry, Faculty of Education for Pure Science, University of Kerbala, Kerbala, Iraq

⁵Department of Physics, Faculty of Science, University of Kufa, Najaf, Iraq.

Corresponding Author:

Heider A. Abdulhussein, *Email: haydera.abdulhussein@uokufa.edu.iq

Content

- 1. Average distances.
- 2. Energies, point groups, and the optimal spin states and average distances.
- 3. Energies of Cu and In and GM of bimetallic systems:
- 4. Band gaps, PDOS, TDOS, and band structures of clusters calculated at the HSE06 level.
- 5. Calculated quantum molecular descriptors for CuIn systems
- 6. Topological parameters
- 7. Molecular graphs for Cu, In, and binary CuIn systems
- 8. Gg
- 9. The convex hull diagram for the Cu-In clusters
- 10. XYZ coordinates of minimum-energy structures.

1. Average distances.

Table S1: Average distances for Cu–Cu and In–In bonds for the Cu₂ and In₂ dimers compared with experimental and theoretical data obtained from literature.

Cu ₂	Distance (Å)	In ₂	Distance (Å)
Exp.	2.25^{1}	Exp.	3.07 ²
Theo.	2.22 ³	Theo.	2.914
Ours	2.22	Ours	3.06

2. Energies, point groups, and the optimal spin states and average distances.

Table S2: The energies, point groups, and optimal spin states of mono- and bimetallic clusters.

Cluster	Energy (eV)	Point Group	2S+1
Cu ₂	-2.753	C _{2v}	singlet
Cu ₃	-4.431	C_{2v}	doublet
Cu ₄	-7.350	D_{2h}	singlet
Cu ₅	-9.856	C_{2v}	doublet
Cu ₆	-12.969	D_{3h}	singlet
Cu ₇	-16.006	D _{2d}	doublet
Cu ₈	-19.095	Cs	singlet
Cu ₉	-21.454	D _{2d}	doublet
Cu ₁₀	-24.589	Cs	singlet
Cu ₁₁	-27.341	C1	doublet
Cu ₁₂	-30.491	C_{2v}	singlet
Cu ₁₃	-33.373	C_{2v}	doublet
In ₂	-1.815	C _{2v}	triplet
In ₃	-3.711	C_{2v}	quartet
In ₄	-5.951	D_{4h}	triplet
In ₅	-7.966	C_{2v}	doublet
In ₆	-10.607	C_s	doublet
In ₇	-13.158	C_s	doublet
In ₈	-15.596	C_s	singlet
In ₉	-17.364	C_s	doublet
In ₁₀	-19.838	C_s	singlet
In ₁₁	-22.212	Cs	doublet
In ₁₂	-24.674	Cs	singlet
In ₁₃	-27.228	Cs	doublet
CuIn	-2.9122	$C_{ m \infty v}$	singlet

Cu ₂ In	-5.0152	C_{2v}	doublet
Cu ₃ In	-7.8788	C_{2v}	singlet
Cu ₄ In	-10.423	C_{3v}	doublet
Cu ₅ In	-13.450	C_{3v}	doublet
Cu ₆ In	-15.749	C_s	doublet
Cu ₇ In	-18.599	C_s	doublet
Cu ₈ In	-20.616	C_s	doublet
Cu ₉ In	-24.407	C_s	singlet
In ₂ Cu	-4.681	C_{2v}	doublet
In ₃ Cu	-6.748	C_{2v}	triplet
In ₄ Cu	-9.046	C_{3v}	doublet
In ₅ Cu	-11.012	C_{3v}	singlet
In ₆ Cu	-13.853	$\mathrm{D}_{4\mathrm{h}}$	singlet
In ₇ Cu	-16.182	Cs	singlet
In ₈ Cu	-18.421	C_s	singlet
In ₉ Cu	-20.628	C_s	singlet

Table S3: Average bond distances of Cu-Cu, In-In, and Cu-In (in Å).

Cluster	Average Bond Distance (Å)					
	Cu-Cu	In-In	Cu-In			
Cu ₂	2.225	-	-			
Cu ₃	2.277	-	-			
Cu ₄	2.366	-	-			
Cu ₅	2.353	-	-			
Cu ₆	2.345	-	-			
Cu ₇	2.420	-	-			
Cu ₈	2.394	-	-			
Cu ₉	2.458	-	-			
Cu ₁₀	2.443	-	-			
Cu ₁₁	2.471	-	-			
Cu ₁₂	2.369	-	-			
Cu ₁₃	2.404	-	-			
In ₂	-	3.062	-			
In ₃	-	3.661	-			
In ₄	-	2.975	-			
In ₅	-	2.950	-			
In ₆	-	2.928	-			
In ₇	-	3.048	-			
In ₈	-	3.093	-			
In ₉	-	2.935	-			
In ₁₀	-	3.035	-			
In ₁₁	-	3.012	-			
In ₁₂	-	3.271	-			
In ₁₃	-	2.974	-			
CuIn	-	-	2.534			
Cu ₂ In	2.309	-	2.645			
Cu ₃ In	2.306	-	2.640			
Cu ₄ In	2.374	-	2.715			
Cu ₅ In	2.385	-	2.602			

Cu ₆ In	2.406	-	2.692
Cu ₇ In	2.406	-	2.663
Cu ₈ In	2.442	-	2.667
Cu ₉ In	2.413	-	2.634
In ₂ Cu	-	3.210	2.649
In ₃ Cu	-	3.057	2.598
In ₄ Cu	-	3.079	2.754
In ₅ Cu	-	2.990	2.696
In ₆ Cu	-	2.924	2.716
In ₇ Cu	-	3.012	2.702
In ₈ Cu	-	3.150	2.711
In ₉ Cu	-	3.168	2.628

3. Energies of Cu and In and GM of bimetallic systems:

Table S4: Energies, binding energies, excess energies and second difference in
energy for all compositions of CuIn systems, N=2-8.

Composition	E _b /e V	Δ/e V	$\Delta_2 E / e V$
N=2			
Cu ₂	1.37	0.00	
Cu ₁ In ₁	1.45	-0.94	
In ₂	1.31	0.00	
N=3			
Cu ₃	2.24	0.00	-1.24
In_1Cu_2	1.97	-0.82	-0.76
In_2Cu_1	1.40	-0.73	-0.29
In ₃	1.84	0.00	-0.34
N=4			
Cu ₄	2.85	0.00	0.41
In ₁ Cu ₃	1.82	-0.87	0.31
In ₂ Cu ₂	1.93	-1.18	
In ₃ Cu ₁	1.77	-0.44	-0.23
In ₄	2.30	0.00	0.22
N=5			
Cu ₅	3.24	0.00	-0.60
In_1Cu_4	1.92	-0.94	-0.48
In_2Cu_3	1.97	-3.43	
In ₃ Cu ₂	2.55	-3.94	
In ₄ Cu ₁	1.92	-0.70	0.33
In ₅	2.61	0.00	-0.62
N=6			
Cu ₆	3.68	0.00	0.07
In ₁ Cu ₅	2.06	-0.87	0.72
In ₂ Cu ₄	2.13	-1.22	
In ₃ Cu ₃	2.08	-0.88	
In ₄ Cu ₂	2.03	-0.49	
In ₅ Cu ₁	1.96	-0.01	-0.87
In ₆	2.99	0.00	0.08

N=7			
Cu ₇	4.06	0.00	-0.05
In ₁ Cu ₆	2.06	-0.14	0.83
In ₂ Cu ₅	2.11	-0.48	
In ₃ Cu ₄	2.15	-0.68	
In ₄ Cu ₃	2.11	-0.35	
In ₅ Cu ₂	2.07	-1.95	
In ₆ Cu ₁	2.11	-0.28	0.51
In ₇	3.30	0.00	0.11
N=8			
Cu ₈	4.42	0.00	0.73
In_1Cu_7	2.12	0.05	0.83
In ₂ Cu ₆	2.19	-0.48	
In ₃ Cu ₅	2.20	-0.49	
In ₄ Cu ₄	2.20	-0.48	
In ₅ Cu ₃	2.18	0.05	
In ₆ Cu ₂	2.24	-0.75	
In ₇ Cu ₁	2.16	-0.14	-0.11
In ₈	3.37	0.00	0.66

4. Band gaps, PDOS, TDOS calculated at the HSE06 level.

 Table S5: Band gaps of mono- and bimetallic clusters.

Clusters	Cu ₂	Cu ₃	Cu ₄	Cu ₅	Cu ₆	Cu7		Cus
Band	3.12	0.881	1.724	1.124	3.078	0.99	8	2.393
gap (eV)								
Clusters	In ₂	In ₃	In ₄	In ₅	In ₆	In ₇		In ₈
Band	0.734	1 168	0 701	0.881	0.005	0.06	3	1 274
gap (eV)	0.734	1.100	0.771	0.001	0.775	0.70	5	1.274
Clusters	In4	Cu	Cu	3In	Cu5In		Cu7In	
Band	0.674		2.969		0.501		2 102	
gap (eV)	0.0)/4	2.808		2.321		2.105	

Figure S1: Partial and total density of state.

Figure S2: Projected band structures of bimetallic a) In₄Cu b) Cu₇In and monometallic c) In₅ and d) Cu₈, at HSE06 level.

Figure S3: Projected band structures of bimetallic a) In₃Cu b) Cu₃In and monometallic c) Cu₄ and d) Cu₆, at HSE06 level.

5. Calculated quantum molecular descriptors for CuIn systems

Cluster	Ан	I/eV	A/e V	γ/eV	u/eV	n/eV	S/eV	ω/eV
N=2	- IIL		11,0	λ/01	per e v			
In ₂	1.92	2.53	6.65	4.79	-4.79	-0.12	-8.33	-95.60
Cu ₁ In ₁	1.70	3.47	4.18	3.33	-3.33	-0.70	-1.42	-7.92
Cu ₂	1.56	3.02	4.56	3.78	-3.78	-1.56	-0.64	-4.57
N=3								
In ₃	0.90	2.75	3.66	1.93	-1.93	-0.90	-1.11	-2.06
Cu ₂ In ₁	1.50	4.44	4.94	4.19	-4.19	-0.50	-2.00	-17.55
Cu ₃	1.48	3.22	4.70	3.96	-3.96	-1.48	-0.67	-5.29
N=4								
In ₄	0.26	3.21	3.47	1.82	-1.82	-0.26	-3.84	-6.37
Cu ₃ In ₁	1.30	3.73	4.03	3.38	-3.38	-0.30	-3.33	-19.04
Cu ₄	0.94	3.42	4.37	3.89	-3.89	-0.94	-1.06	-8.04
N=5								
In ₅	0.42	3.18	3.61	1.89	-1.89	-0.42	-2.38	-4.25
Cu_4In_1	1.69	3.45	4.15	3.30	-3.30	-0.69	-1.44	-7.89
Cu ₅	0.88	3.77	4.65	4.21	-4.21	-0.88	-1.13	-10.07

Table S6: Calculated quantum molecular descriptors for atoms, dimers and clusters (N = 2-5).

6. Topological parameters

 Table S7: Topological analysis of selected CuIn, Cu, In Clusters, calculated using the B3LYP/WTBS Method.

Bond	ρ _b (eÅ ⁻³)	$\nabla^2 \rho_b(e \text{\AA}^{-5})$	G _b (he ⁻¹)	H _b (he ⁻¹)	V(he ⁻¹)	V/G
		Cu	3In			
Cu1-In	0.034	0.067	0.022	-0.006	-0.028	1.273
Cu2-In	0.032	0.06	0.02	-0.005	-0.025	1.250
Cu3-In	0.035	0.07	0.023	-0.006	-0.029	1.261
Cu1-Cu2	0.041	0.154	0.047	-0.008	-0.055	1.170
Cu2-Cu3	0.04	0.147	0.044	-0.008	-0.052	1.182
		Cu	;In			
Cu1-In	0.038	0.075	0.026	-0.007	-0.033	1.269
Cu3-In	0.038	0.073	0.025	-0.007	-0.032	1.280
Cu4-In	0.037	0.073	0.025	-0.007	-0.032	1.280
Cu5-In	0.038	0.074	0.025	-0.007	-0.032	1.280

Cu1-Cu2	0.036	0.13	0.039	-0.006	-0.045	1.154
Cu1-Cu3	0.03	0.099	0.029	-0.005	-0.034	1.172
Cu1-Cu4	0.03	0.097	0.029	-0.004	-0.033	1.138
Cu2-Cu3	0.036	0.13	0.039	-0.007	-0.046	1.179
Cu2-Cu4	0.035	0.123	0.037	-0.006	-0.043	1.162
Cu2-Cu5	0.037	0.134	0.04	-0.007	-0.047	1.175
Cu3-Cu5	0.029	0.091	0.027	-0.004	-0.031	1.148
Cu4-Cu5	0.03	0.099	0.029	-0.005	-0.034	1.172
		Cu ₇	In			
Cu1-In	0.031	0.065	0.021	-0.005	-0.026	1.238
Cu2-In	0.032	0.067	0.022	-0.005	-0.027	1.227
Cu3-In	0.031	0.064	0.021	-0.005	-0.025	1.190
Cu1-Cu2	0.03	0.097	0.029	-0.005	-0.033	1.138
Cu1-Cu3	0.03	0.097	0.029	-0.004	-0.033	1.138
Cu1-Cu4	0.036	0.118	0.036	-0.007	-0.043	1.194
Cu1-Cu6	0.036	0.119	0.037	-0.007	-0.043	1.162
Cu2-Cu3	0.029	0.096	0.028	-0.004	-0.033	1.179
Cu2-Cu4	0.036	0.119	0.036	-0.007	-0.043	1.194
Cu2-Cu5	0.036	0.119	0.036	-0.007	-0.043	1.194
Cu3-Cu5	0.036	0.12	0.037	-0.007	-0.043	1.162
Cu3-Cu6	0.036	0.118	0.036	-0.007	-0.043	1.194
Cu4-Cu5	0.032	0.106	0.032	-0.005	-0.037	1.156
Cu4-Cu6	0.031	0.105	0.031	-0.005	-0.036	1.161
Cu4-Cu7	0.035	0.119	0.036	-0.006	-0.042	1.167
Cu5-Cu6	0.031	0.102	0.03	-0.005	-0.035	1.167
Cu5-Cu7	0.035	0.117	0.035	-0.006	-0.041	1.171
Cu6-Cu7	0.036	0.121	0.037	-0.006	-0.043	1.162
		Cı	l ₂			
Cu1-Cu2	0.047	0.159	0.049	-0.01	-0.059	1.204
	1	Cı	13	1	I	1
Cu1-Cu2	0.043	0.155	0.047	-0.008	-0.056	1.180
Cu1-Cu3	0.043	0.154	0.047	-0.008	-0.056	1.180
Cu2-Cu3	0.028	0.085	0.025	-0.004	-0.029	1.151
	1	Cu	4	1	1	1
Cu1-Cu2	0.044	0.182	0.054	-0.009	-0.063	1.167
Cu1-Cu3	0.037	0.123	0.038	-0.007	-0.044	1.158
Cu1-Cu4	0.037	0.12	0.037	-0.007	-0.043	1.162
Cu2-Cu3	0.036	0.119	0.036	-0.006	-0.043	1.194
Cu2-Cu4	0.037	0.122	0.037	-0.007	-0.044	1.189
	0.55	Cı	l5			
Cu1-Cu2	0.036	0.127	0.038	-0.006	-0.045	1.169
Cu2-Cu3	0.037	0.125	0.038	-0.007	-0.045	1.179
Cu2-Cu5	0.037	0.125	0.038	-0.007	-0.045	1.176

Cu1-Cu5	0.040	0.126	0.039	-0.008	-0.047	1.195
Cu1-Cu3	0.036	0.126	0.038	-0.006	-0.044	1.169
Cu1-Cu4	0.041	0.130	0.040	-0.008	-0.048	1.194
Cu3-Cu4	0.037	0.125	0.038	-0.007	-0.045	1.176
	· · · · · ·	Cu	l ₆			
Cu1-Cu2	0.036	0.122	0.037	-0.006	-0.043	1.162
Cu1-Cu3	0.035	0.117	0.035	-0.006	-0.042	1.200
Cu1-Cu4	0.04	0.126	0.039	-0.007	-0.047	1.205
Cu1-Cu5	0.04	0.128	0.039	-0.008	-0.047	1.205
Cu2-Cu3	0.036	0.122	0.037	-0.006	-0.043	1.162
Cu2-Cu4	0.039	0.123	0.038	-0.007	-0.045	1.184
Cu2-Cu6	0.039	0.125	0.039	-0.007	-0.046	1.179
Cu3-Cu5	0.04	0.127	0.039	-0.007	-0.047	1.205
Cu3-Cu6	0.04	0.126	0.039	-0.007	-0.047	1.205
		Cı	17			
Cu1-Cu3	0.027	0.090	0.026	-0.004	-0.030	1.143
Cu1-Cu4	0.035	0.120	0.036	-0.006	-0.042	1.172
Cu3-Cu4	0.034	0.113	0.034	-0.006	-0.040	1.171
Cu4-Cu6	0.033	0.114	0.034	-0.006	-0.040	1.162
Cu1-Cu7	0.034	0.115	0.035	-0.006	-0.041	1.171
Cu2-Cu3	0.034	0.112	0.034	-0.006	-0.040	1.172
Cu5-Cu6	0.034	0.116	0.034	-0.006	-0.040	1.162
Cu3-Cu6	0.034	0.115	0.035	-0.006	-0.041	1.172
Cu2-Cu5	0.033	0.114	0.034	-0.006	-0.040	1.162
Cu3-Cu7	0.035	0.119	0.036	-0.006	-0.042	1.172
Cu2-Cu7	0.033	0.112	0.033	-0.005	-0.039	1.162
Cu3-Cu5	0.034	0.113	0.034	-0.006	-0.040	1.171
Cu1-Cu6	0.034	0.111	0.034	-0.006	-0.039	1.171
		Cı	18	1		1
Cu1-Cu3	0.027	0.090	0.026	-0.004	-0.030	1.143
Cu1-Cu4	0.035	0.120	0.036	-0.006	-0.042	1.172
Cu3-Cu4	0.034	0.113	0.034	-0.006	-0.040	1.171
Cu4-Cu6	0.033	0.114	0.034	-0.006	-0.040	1.162
Cu1-Cu7	0.034	0.115	0.035	-0.006	-0.041	1.171
Cu2-Cu3	0.034	0.112	0.034	-0.006	-0.040	1.172
Cu5-Cu6	0.034	0.116	0.034	-0.006	-0.040	1.162
Cu3-Cu6	0.034	0.115	0.035	-0.006	-0.041	1.172
Cu2-Cu5	0.033	0.114	0.034	-0.006	-0.040	1.162
Cu3-Cu7	0.035	0.119	0.036	-0.006	-0.042	1.172
Cu2-Cu7	0.033	0.112	0.033	-0.005	-0.039	1.162
Cu3-Cu5	0.034	0.113	0.034	-0.006	-0.040	1.171
Cu1-Cu6	0.034	0.111	0.034	-0.006	-0.039	1.171
		Cı	19			

Cu1-Cu3	0.034	0.115	0.035	-0.006	-0.04	1.143
Cu1-Cu4	0.033	0.113	0.034	-0.006	-0.04	1.176
Cu1-Cu5	0.038	0.13	0.039	-0.007	-0.046	1.179
Cu1-Cu7	0.035	0.12	0.036	-0.006	-0.042	1.167
Cu1-Cu8	0.035	0.121	0.036	-0.006	-0.043	1.194
Cu2-Cu3	0.034	0.115	0.035	-0.006	-0.04	1.143
Cu2-Cu4	0.034	0.114	0.034	-0.006	-0.04	1.176
Cu2-Cu6	0.038	0.131	0.04	-0.007	-0.047	1.175
Cu2-Cu7	0.035	0.118	0.036	-0.006	-0.042	1.167
Cu2-Cu8	0.035	0.118	0.036	-0.006	-0.042	1.167
Cu3-Cu6	0.033	0.111	0.033	-0.006	-0.039	1.182
Cu3-Cu7	0.036	0.121	0.037	-0.006	-0.043	1.162
Cu4-Cu5	0.034	0.112	0.034	-0.006	-0.039	1.147
Cu4-Cu6	0.034	0.113	0.034	-0.006	-0.04	1.176
Cu4-Cu8	0.036	0.12	0.036	-0.006	-0.043	1.194
Cu5-Cu6	0.03	0.097	0.029	-0.004	-0.033	1.138
Cu7-Cu8	0.027	0.083	0.025	-0.004	-0.028	1.120
		In	13			
In1-In2	0.023	0.038	0.012	-0.002	-0.014	1.192
In1-In3	0.023	0.038	0.012	-0.002	-0.014	1.188
		In	4			
In1-In3	0.026	0.026	0.01	-0.004	-0.013	1.300
In1-In4	0.026	0.027	0.01	-0.004	-0.014	1.400
In2-In3	0.026	0.027	0.01	-0.003	-0.014	1.400
In2-In4	0.026	0.026	0.01	-0.004	-0.014	1.400
		In	6			
In2-In4	0.027	0.033	0.012	-0.004	-0.016	1.310
In3-In6	0.027	0.034	0.012	-0.004	-0.016	1.299
In1-In5	0.027	0.037	0.013	-0.003	-0.016	1.266
In1-In6	0.024	0.024	0.009	-0.003	-0.012	1.350
In4-In6	0.022	0.026	0.009	-0.002	-0.011	1.271
In ₇						
In2-In3	0.024	0.026	0.009	-0.003	-0.012	1.302
In4-In5	0.025	0.031	0.011	-0.003	-0.014	1.293
In2-In7	0.024	0.027	0.010	-0.003	-0.012	1.300
In4-In4	0.023	0.024	0.009	-0.003	-0.012	1.327
In2-In6	0.018	0.014	0.005	-0.002	-0.007	1.344
In1-In6	0.026	0.033	0.011	-0.003	-0.015	1.285
In3-In5	0.028	0.035	0.013	-0.004	-0.016	1.304
In1-In2	0.018	0.014	0.005	-0.002	-0.007	1.345
In ₈						
In1-In2	0.021	0.021	0.008	-0.002	-0.01	1.250

In1-In3	0.03	0.045	0.015	-0.004	-0.019	1.267
In1-In5	0.023	0.022	0.008	-0.003	-0.011	1.375
In1-In6	0.023	0.022	0.008	-0.003	-0.011	1.375
In2-In4	0.03	0.045	0.015	-0.004	-0.019	1.267
In2-In5	0.023	0.023	0.009	-0.003	-0.011	1.222
In2-In6	0.023	0.022	0.008	-0.003	-0.011	1.375
In3-In4	0.021	0.02	0.008	-0.002	-0.01	1.250
In3-In7	0.023	0.022	0.008	-0.003	-0.011	1.375
In3-In8	0.023	0.022	0.008	-0.003	-0.011	1.375
In4-In7	0.023	0.023	0.009	-0.003	-0.012	1.333
In4-In8	0.023	0.022	0.008	-0.003	-0.011	1.375
In5-In7	0.028	0.041	0.014	-0.003	-0.017	1.214
In6-In8	0.028	0.041	0.014	-0.003	-0.017	1.214

7. Molecular graphs for Cu, In, and binary CuIn systems

Figure S4: Molecular graph of CuIn, Cu and In Clusters. Solid lines indicate the presence of bond paths, whereas small red dots illustrate the bond critical points.

Figure S5: Laplacian maps of the electron density for clusters.

Figure S6: 5 lowest energy configurations of each system and the corresponding energies (in eV).

8. the convex hull diagram for the Cu-In clusters

Figure S7: the convex hull diagram for the Cu-In clusters. The x-axis represents the indium fraction (X_{in}) , and the y-axis represents the energy (eV). The points connected by solid lines form the convex hull, indicating the thermodynamically stable configurations. Clusters lying on the convex hull are stable, while those above are less stable or metastable.

9. XYZ coordinates of minimum-energy structures

9.1 monometallic Cu

Cu_2

Cu 5.195465 5.298632 5.483022

Cu 6.718685 6.615519 6.431128

Cu₃

Cu 5.999661 5.619271 7.054590

Cu 7.681839 7.105236 7.439252

Cu 6.210180 7.167040 5.397573

Cu₄

Cu 6.463658 7.592496 6.348217

Cu 7.808087 6.673994 7.922681

Cu 5.455040 6.389678 8.119416

Cu 8.812601 7.883219 6.149215

Cu₅

Cu 7.198979 7.897425 6.947613

Cu 9.113454 7.935263 8.370246 Cu 7.312316 6.454341 8.846205

Cu 5.450883 6.429358 7.405559

Cu 8.979010 9.338256 6.484868

Cu₆

 Cu
 7.814696
 7.191311
 8.989532

 Cu
 7.804375
 9.559688
 8.581551

 Cu
 9.287198
 8.143649
 7.326582

 Cu
 6.382145
 8.600456
 10.181418

 Cu
 9.292869
 5.852095
 7.778153

 Cu
 9.212276
 10.446359
 6.936158

Cu₇

Cu 6.904564 6.834542 6.892011 Cu 8.109850 8.710585 5.933099 Cu 8.327622 8.382541 8.331236 Cu 8.151340 6.002830 8.777419 Cu 6.209927 9.095765 7.381691 Cu 6.250438 7.452527 9.153626 Cu 9.325615 6.800568 6.810121 Cu₈ Cu 8.986183 7.901047 6.833536 Cu 6.956532 6.790087 8.830604 Cu 7.514671 9.108641 8.349815 Cu 6.948049 6.631660 6.399882 Cu 7.085041 9.016752 5.964860 Cu 5.433768 8.109148 7.588584 Cu 9.184417 7.626259 9.213500 Cu 8.736497 5.661410 7.664224 Cu₉ Cu 7.340215 9.007876 9.001348 Cu 9.479141 7.992725 9.617893 Cu 9.230247 7.130970 7.364004 Cu 8.619675 9.436752 6.944281 Cu 6.904983 7.756266 6.969079 Cu 9.310790 10.358687 9.075630 Cu 7.597597 6.600091 9.093480 Cu 10.839793 8.897932 7.822035 Cu 5.405368 7.546346 8.840059

Cu₁₀

Cu 8.732306 6.835625 8.237733 Cu 7.332896 8.574455 9.458672 Cu 9.550911 9.162413 8.547917 Cu 7.615428 8.662817 6.989591 Cu 7.710197 10.678343 8.279658 Cu 9.868765 8.051232 6.444492 Cu 9.307490 7.613330 10.424932 Cu 6.342928 6.883595 8.075556 Cu 9.285066 10.425567 6.419300 Cu 7.331696 6.190474 10.200002 Cu₁₁ Cu 8.926787 10.149770 10.545526 Cu 9.550906 8.699966 8.347810 Cu 11.272082 9.898726 9.706934 Cu 10.084444 8.037766 10.753239 Cu 9.681957 11.120132 8.308724 Cu 7.515284 10.102232 8.587830 Cu 7.824519 8.011678 9.890715 Cu 11.587147 7.550567 8.951941 Cu 10.337975 12.097921 10.401473 Cu 8.018551 12.262940 9.675667 Cu 9.484194 6.352335 9.114554 Cu₁₂ Cu 8.842829 7.705579 7.142196 Cu 8.051778 8.941769 9.412142 Cu 9.537713 10.006445 7.647011 Cu 7.146899 9.523237 7.183060 Cu 10.430611 8.200459 8.947860 Cu 6.609330 7.380625 8.223801 pg. 27

 Cu
 8.628017
 6.547884
 9.338518

 Cu
 7.949347
 11.267946
 8.897580

 Cu
 9.889462
 10.365122
 10.090466

 Cu
 9.513066
 8.192434
 11.149105

 Cu
 6.793188
 7.456635
 5.858087

 Cu
 7.39802
 5.544245
 7.242552

Cu₁₃

Cu 9.892563 10.432230 10.415316

Cu 7.763274 9.290822 10.732983

Cu 8.795929 8.841647 8.490454

Cu 10.110738 10.820367 7.940300

Cu 7.916274 11.101089 9.058066

Cu 9.824489 8.012490 10.725910

Cu 11.211205 8.838722 8.819550

Cu 9.912790 6.695182 8.744427

Cu 9.890621 12.640721 9.463675

Cu 11.961223 11.196013 9.461414

Cu 11.968381 9.301764 11.023071

Cu 6.422503 9.080762 8.765997

Cu 7.676719 7.094514 9.705730

9.2 monometallic In

In_2

In 4.989480 6.518878 6.337119

In 8.032296 6.502897 6.684657

In₃

In 7.511602 5.959793 6.102926

In 7.231444 6.545740 8.988865

In 6.495615 8.732987 6.146729

In₄

In 5.352972 6.779522 5.372591 In 8.340879 6.917081 8.327846 In 8.327630 6.974476 5.353073 In 5.371949 6.722488 8.339921 In₅ In 7.533421 6.662819 5.273175 In 5.224335 5.288969 6.259279 In 6.107087 8.975376 6.438303 In 8.260044 5.559882 7.938550 In 7.644207 8.282045 8.859645 In₆ In 8.428304 8.717191 8.454348 In 6.162333 5.229131 7.704169 In 5.629820 7.364484 5.556087 In 9.023489 5.839461 7.575489 In 5.562878 8.128155 8.530818 In 8.484450 8.012854 5.470509 In₇ In 5.621952 6.500730 5.229103 In 5.132751 8.719536 7.734347 In 8.052620 8.265053 8.481554 In 8.545257 5.552680 5.306298 In 8.180593 5.357309 8.256928 In 7.778212 8.517462 5.616838 In 5.291367 5.689844 7.977684 In₈ In 8.626317 5.746696 7.030624 In 6.021389 6.543873 8.689192 In 9.013803 8.484396 6.327822 pg. 29

In	6.411548	9.286676	8.000988		
In	5.825763	5.785412	5.702777		
In	8.804443	6.486727	10.039043		
In	6.213342	8.550667	5.011951		
In	9.210299	9.242606	9.324507		
In	9				
In	9.490917	7.171718	9.909079		
In	9.252891	10.035721	10.084566		
In	8.776847	7.686893	6.868890		
In	8.497164	10.628724	6.975592		
In	11.714684	7.801421	7.884249		
In	6.366366	9.932391	8.985980		
In	11.356661	10.704850	7.645467		
In	6.877472	7.923005	11.757025		
In	6.550981	6.998908	8.772608		
In ₁₀					
In	7.647586	8.231854	7.967769		
In	9.929558	9.459976	9.610306		
In	9.968578	9.729768	6.333670		
In	8.639545	5.597300	8.675244		
In	7.524181	7.662233	11.376205		
In	10.873381	7.105953	7.251299		
In	6.702498	10.995543	7.412628		
In	6.938279	10.347057	10.372381		
In	10.407435	6.859121	10.795376		
In	9.398504	12.040387	8.234492		
In	11				
In	9.518426	10.324837	10.123768		
In	9.680846	11.915770	7.435841		
In	12.319447	9.096717	10.776819		
p	g. 30				

In	10.674543	6.662583 10.112123	
In	10.686481	8.587620 7.734324	
In	9.302524	8.146346 12.348888	
In	6.719634	9.545489 11.675447	
In	7.964813	7.735612 9.170473	
In	7.970413	9.544618 6.699736	
In	6.670786	10.961996 9.018353	
In	12.328264	11.315155 8.740971	
In	12		
In	10.356497	9.614732 9.117774	
In	7.571825	8.479424 7.827100	
In	9.539539	10.204348 12.176009	
In	7.898454	11.877663 9.855897	
In	12.664523	10.583402 10.764551	
In	10.516456	12.856517 10.937304	
In	9.421556	7.162820 10.569080	
In	8.847193	11.141430 7.007619	
In	11.351142	12.551132 8.068724	
In	11.587334	8.229583 12.584348	
In	7.027449	9.148776 10.709278	
In	12.553708	7.486046 9.717992	
In	13		
In	9.702015	9.551982 9.525513	
In	8.285606	9.632379 12.374104	
In	6.790883	8.825245 8.210742	
In	10.692340	6.668478 9.016870	
In	9.571223	8.247823 6.718760	
In	11.748637	11.036462 7.730711	
In	8.619363	11.268381 7.188380	
In	9.907275	12.819933 9.683905	

In 7.200899 11.289495 10.121425

In 12.768139 9.311827 9.960263

In 10.976190 11.198323 11.926492

In 7.806964 7.172817 10.466138

In 10.795135 7.840953 11.941176

9.3 Bimetallic CuIn

Cu_1In_1

Cu 7.651290 7.348905 7.164705

In 5.828640 5.974576 6.062569

Cu_2In_1

Cu 6.685096 7.082710 8.923226

Cu 7.053747 6.004655 6.914204

In 8.197564 8.375229 7.177567

Cu_3In_1

Cu 7.639879 8.814580 9.317575

Cu 8.537016 8.559238 7.208114

Cu 7.879998 6.965965 5.651080

In 6.520595 6.892081 7.894382

$Cu_4In_1 \\$

Cu 7.348486 6.083352 7.186931

Cu 8.535547 7.315083 8.893275

Cu 6.157151 7.320678 8.826563

Cu 9.482580 7.030738 6.732199

In 7.411314 8.779751 6.909799

Cu₅In₁

 Cu
 7.229953
 5.880531
 7.120104

 Cu
 8.514443
 6.719747
 8.946537

 Cu
 6.273062
 7.509097
 8.752553

 Cu
 9.200822
 7.375304
 6.738945

 Cu
 8.267811
 9.010839
 8.372402

In 6.799754 8.322939 6.329579

Cu₆In₁

Cu 8.739849 9.666272 9.558608

Cu 9.775466 7.666366 8.709465

Cu 6.907495 9.432294 7.888169

Cu 9.208667 9.523363 7.199123

Cu 7.970572 7.424060 7.055526

Cu 10.284433 7.600967 6.330077

In 7.260041 7.404910 9.633493

Cu₇In₁

 Cu
 9.355155
 9.871283
 8.511221

 Cu
 9.310617
 7.519888
 7.652948

 Cu
 8.611247
 8.008307
 10.011095

 Cu
 7.748408
 9.164455
 6.871526

 Cu
 7.022299
 7.325280
 8.350359

 Cu
 7.067056
 9.658797
 9.197499

 Cu
 5.457232
 8.974927
 7.561936

 In
 11.216344
 8.162235
 9.400073

Cu₈In₁

Cu 10.425940 11.767112 11.170863

Cu 10.462825 9.531306 9.607965

Cu 11.501323 11.586364 8.883804

Cu 9.083245 11.578415 9.189165

Cu 12.477145 10.559839 10.827266

Cu 8.681855 10.107161 11.148388

Cu 10.390749 13.599391 9.447351

Cu 12.437015 13.002340 10.638994

In 10.977709 8.837186 12.205559

Cu₉In₁

Cu 7.184081 7.495778 6.555281

Cu	8.509089	7.856502	8.862650
Cu	5.974418	8.029150	8.574942
Cu	9.173899	6.237570	7.181690
Cu	7.451300	9.726664	7.749169
Cu	9.313503	8.626310	6.611082
Cu	5.423252	9.163229	6.474692
Cu	7.533748	9.716001	5.391730
Cu	9.525296	5.736639	9.495863
In	6.981059	5.551236	8.838419

9.4 Bimetallic InCu

In₁Cu₂

In 8.197564 8.375229 7.177567 Cu 6.685096 7.082710 8.923226 Cu 7.053747 6.004655 6.914204 In₂Cu₁ In 6.672437 6.336367 5.007273 In 6.047325 6.384568 8.155671 Cu 7.837217 7.829144 6.860411 In₂Cu₂ In 6.203395 8.484751 7.780577 In 8.980477 8.054698 6.772045 Cu 7.203024 6.158090 7.111452 Cu 8.111798 7.301998 9.121376 In₂Cu₃ In 9.230536 8.268092 7.922586 In 6.103728 6.975080 8.318351 Cu 7.427957 7.424901 5.893044 Cu 8.317314 5.833357 7.403261 Cu 6.868387 9.280911 7.256642

In₃Cu₂

In 6.535330 6.711805 8.350669 In 8.018749 9.830102 10.288125 In 9.702989 7.918051 6.488837 Cu 9.048641 7.654013 9.085268 Cu 9.971640 9.847281 8.396459 Cu 7.673783 9.180279 7.701315 In₃Cu₁ In 8.438763 7.191957 9.046842 In 6.139115 8.816400 7.854386 In 8.844342 7.077279 6.010446 Cu 6.690469 6.188295 7.407394 In₄Cu₁ In 6.206058 5.401229 5.391613 In 6.916390 5.376496 8.401658 In 6.364531 8.353860 5.390320 In 7.077645 8.328688 8.385630 Cu 8.344887 6.761091 6.496163 In₅Cu₁ In 7.090417 6.753731 5.934583 In 9.033523 8.821525 7.072795 In 8.399522 7.883911 9.840535 In 6.248882 9.674590 6.280460 In 6.504069 5.776241 8.695250 Cu 9.038425 6.147098 7.879073 In₆Cu₁ In 8.693503 8.140447 9.537285 In 8.669438 9.544365 6.968032 In 8.546251 5.450099 8.104392 In 5.866376 6.720417 8.785918

In	5.834157	8.118958	6.217213
In	8.537626	6.895876	5.501473
Cu	6.472644	9.348705	8.553404
In	7Cu1		
In	8.582129	6.536089	6.606877
In	8.636930	9.852283	7.162237
In	8.477489	6.087296	9.514285
In	8.491298	9.384789	10.016451
In	6.152762	8.294163	6.798034
In	11.682559	9.992912	8.812598
In	6.017618	7.821856	9.649496
Cu	10.073846	7.869269	8.357991
In	₈ Cu ₁		
In	8.519061	5.929688	9.896825
In	8.801198	7.410859	6.793796
In	7.910283	9.068963	9.935282
In	8.408298	10.457850	7.057596
In	6.140663	8.716888	5.681605
In	6.102787	6.903986	8.258402
In	10.863045	9.546804	8.697187
In	11.222297	6.559900	8.720421
Cu	10.153142	7.921645	10.748580
In	9Cu1		
In	9.975029	8.902237	9.268831
In	6.822640	7.787789	7.752378
In	9.783240	7.726488	6.387178
In	7.614830	10.797335	8.673216
In	9.094826	5.648501	8.535097
In	6.863311	8.751091	10.845781
In	8.951028	6.664914	11.363998

In 10.154225 10.829216 6.760290

In 7.509020 9.825197 5.663932

Cu 6.786511 6.206577 9.851397

References:

- van Albada, G. A.; Mutikainen, I.; Turpeinen, U.; Reedijk, J. Crystal Structure, Magnetism and Spectroscopy of a Dinuclear Cu (II) Compound with a Chiral Ligand; Cu2 (SL)(μ-Cl)(Cl) 2 (CH3OH)(HSL= S-1, 2-Bis (Benzimidazol-2-Yl)-1-Hydroxyethane). *Polyhedron* 2006, 25 (1), 81–86.
- (2) Zumdick, M. F.; Landrum, G. A.; Dronskowski, R.; Hoffmann, R.-D.; Pöttgen, R. Structure, Chemical Bonding, and Properties of ZrIn2, IrIn2, and Ti3Rh2In3. *Journal of Solid State Chemistry* **2000**, *150* (1), 19–30.
- (3) Ahmed, A. A. Structural and Electronic Properties of the Adsorption of Nitric Oxide Molecule on Copper Clusters CuN (N= 1–7): A DFT Study. *Chemical Physics Letters* **2020**, *753*, 137543.
- (4) Hakkar, F.; Zouchoune, B. Predicted Structures and Electronic Properties of Gallium-Indium Clusters GamInn–m (n = 4, 6, 8 and m < n): A Density Functional Study. *J Struct Chem* **2018**, *59* (5), 997–1009. https://doi.org/10.1134/S0022476618050013.