

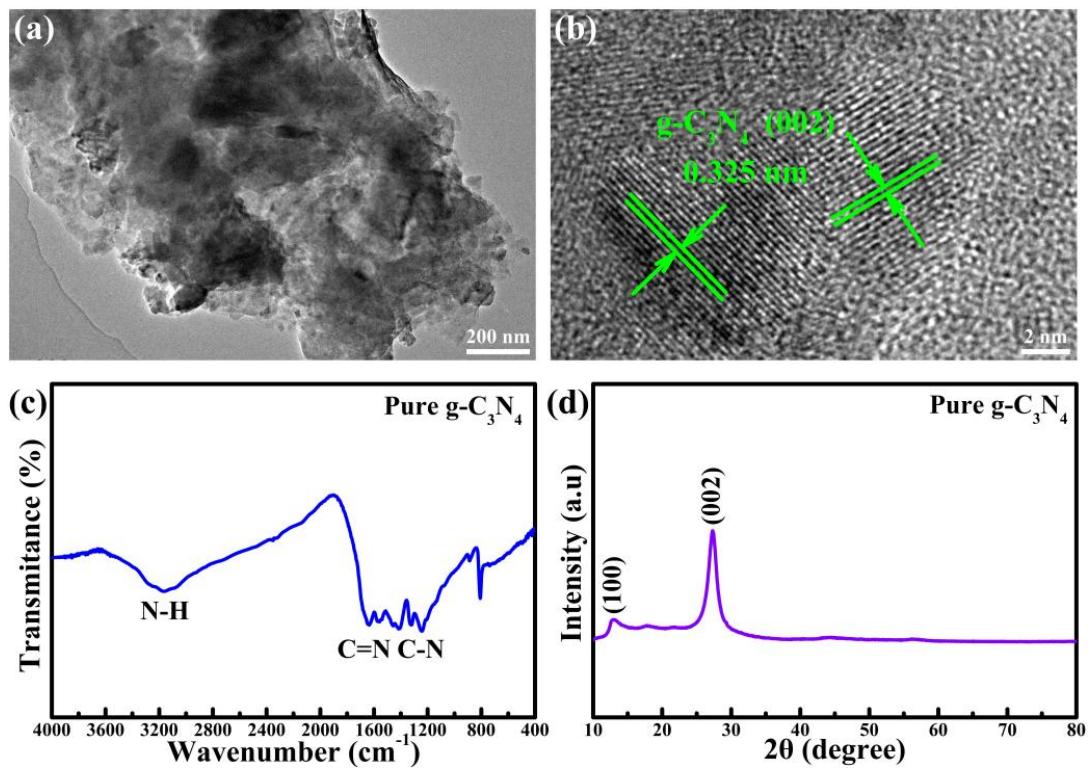
Supplementary materials

Construction of Rh doped SrTiO₃/g-C₃N₄ p-n heterojunction for enhanced photoelectrochemical performance

Feng Nan,^{*a} Songtao Chen,^a Shun Wang,^{*b} Yi Lin,^a Baolu Fan,^a Hao Li,^{*c} and Lei Zhou^{*a}

^a Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an, 223003, Jiangsu, China

^b School of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou, 215000, Jiangsu, China


^c State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, Guangdong, China

* Corresponding authors:

fengnan@hyit.edu.cn (Feng Nan), swang@cslg.edu.cn (Shun Wang),
lihao000000@163.com (Hao Li), leizhou@hyit.edu.cn (Lei Zhou).

1. The morphology, FTIR, and XRD of g-C₃N₄

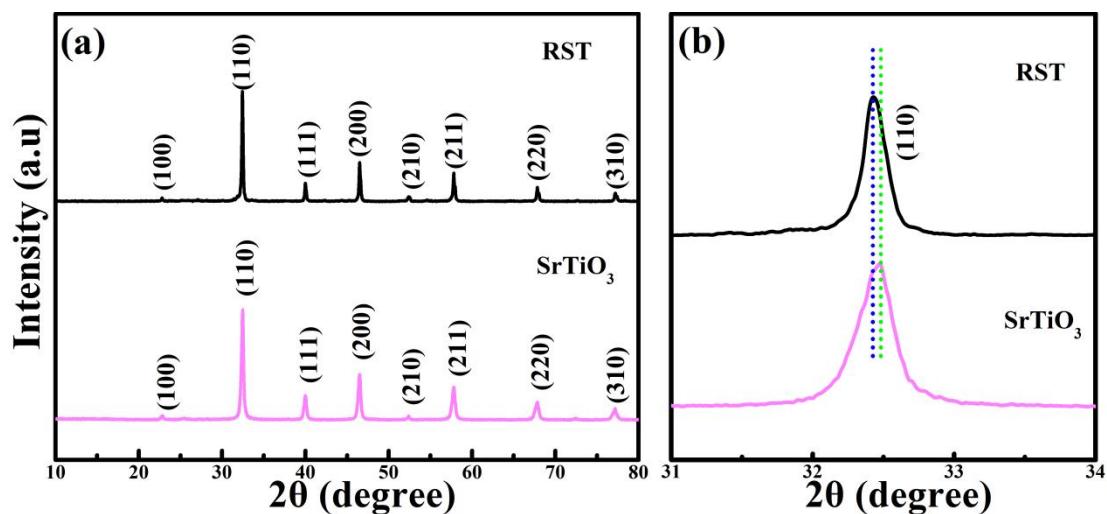
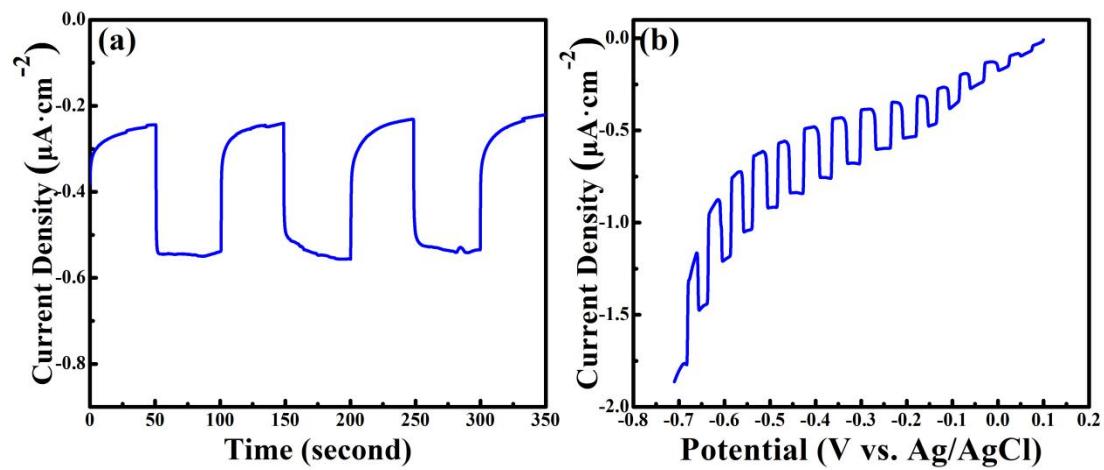

To further gain more information of g-C₃N₄, the TEM and HRTEM were carried out. Fig. S1(a) and 1(b) display the TEM and HRTEM images of the g-C₃N₄ sample. The measured result displays a typical layered nanosheet structure, and the lattice spacing of 0.325 nm can be ascribed to the hexagonal (002) plane of g-C₃N₄. In addition, Figure S1(c) displays the FTIR curves of g-C₃N₄ sample. For the pure g-C₃N₄, the peaks located at 810 cm⁻¹, 1200-1600 cm⁻¹, and 2900-3500 cm⁻¹ can be attributed the breathing vibration of triazine units, C-N/C=N bonds, and N-H bonds, respectively. Figure S1(d) demonstrated the XRD patterns for g-C₃N₄ sample. There are two diffraction peaks located at 13.2° and 27.3° can be observed, attributed to the (100) and (002) crystal planes with an intralayer long-range order and an interlayer stacking structure, respectively.¹ Based on the analysis, the g-C₃N₄ sample has been successfully prepared by the thermal polymerization method.

Fig. S1 (a) TEM and (b) HRTEM images for g-C₃N₄. (c) FTIR spectrum and (d) XRD pattern of g-C₃N₄.


2. XRD patterns of pure SrTiO_3 and Rh doped SrTiO_3 .

For the SrTiO_3 (non doped Rh elements) sample, the diffraction peak positions and relative intensities of (100), (110), (111), (200), (210), (211), (220), and (310) crystal planes can be observed, which are consistent with the JCPDS No. 35-0634. After doping with Rh elements, no extra peaks were observed, implying no production of impurities in RST sample. However, a slight shift towards lower 2 theta can be observed on the (110) peak in RST than that in SrTiO_3 . The shift can be ascribed to the be different ionic radii between Rh^{3+} (0.0665 nm), Rh^{4+} (0.060 nm) and that of Ti^{4+} (0.0605 nm). It is worth noting that, the ionic radii of Rh^{3+} and Rh^{4+} are much smaller than that of Sr^{2+} (0.118 nm), which suggests that Rh atoms replace the Ti atoms in SrTiO_3 crystalline structure.²⁻⁴

Fig. S2 (a) XRD patterns of different samples, (b) magnified area for pure SrTiO_3 and RST samples.

3. The PEC properties of g-C₃N₄.

Fig. S3 PEC properties of pure g-C₃N₄ under chopped light. (a) Photocurrent versus time. (b) LSV curves.

4. Optical properties of g-C₃N₄ and SrTiO₃.

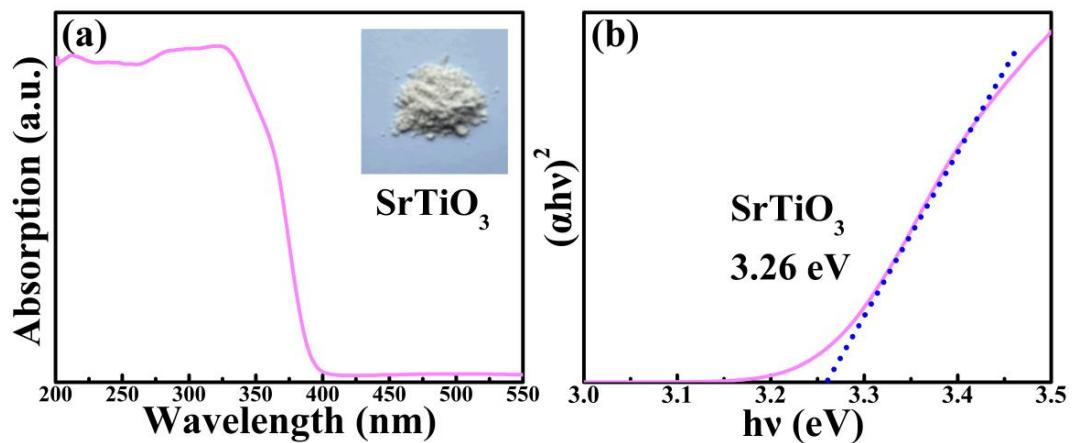


Fig. S4 (a) Absorption spectrum of SrTiO₃. (d) Eg value for SrTiO₃.

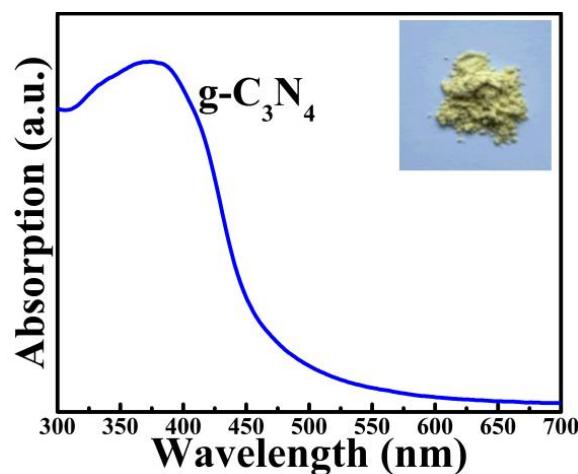
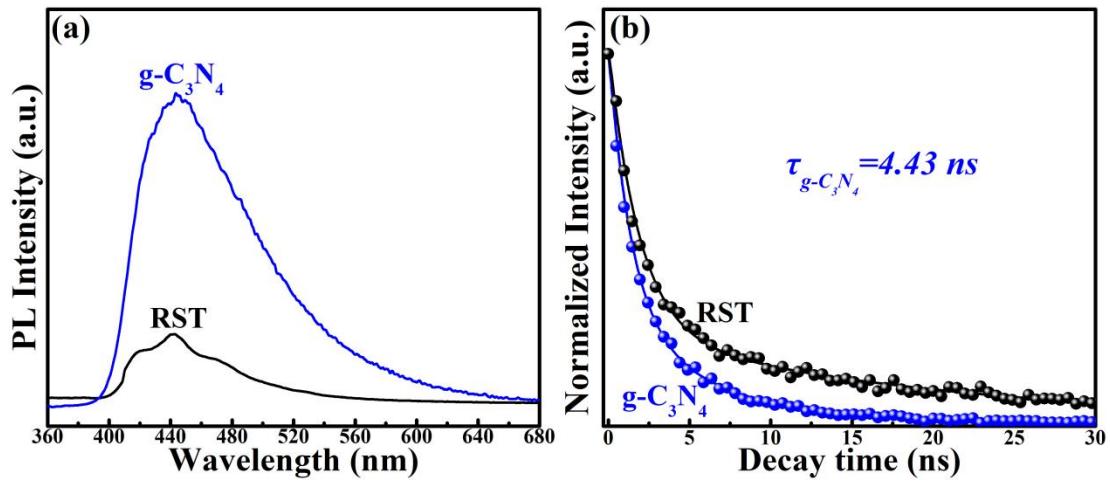
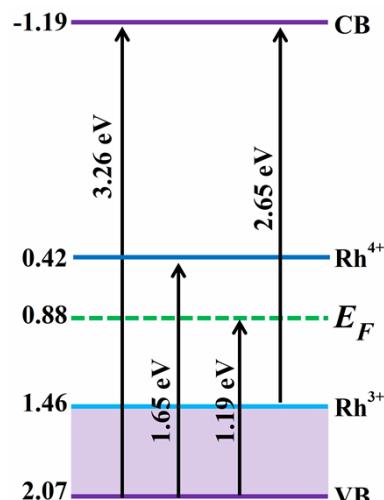



Fig. S5 Absorption spectrum of g-C₃N₄.

5. PL analysis and PL-decay of different g-C₃N₄ and RST.

Fig. S6 (a) PL spectra of g-C₃N₄ and RST. (d) PL-decay of g-C₃N₄ and RST.

Table S1 PL-decay lifetimes of different samples.


Samples	A ₁	τ_1	A ₂	τ_2	τ_{total} (ns)
RST	0.23	20.8	0.71	1.88	16.67
g-C ₃ N ₄	0.31	5.95	0.67	1.37	4.43
RSTCN7.5	0.25	24.28	0.70	2.02	20.07

6. The EIS results of different samples

Table S2 EIS results of different samples.

Samples	R_s ($\Omega \cdot \text{cm}^{-2}$)	R_{ct} ($\Omega \cdot \text{cm}^{-2}$)
RST	35.4	6769
RSTCN7.5	22.5	3699

7. Band structure of RST

Fig. S7 Energy diagram for RST (including Rh^{4+} and Rh^{3+} levels).

References

- 1 L. X. Wang, Y. L. Dong, J. Y. Zhang, F. F. Tao and J. J. Xu, *J. Solid. State. Chem.*, 2022, **308**, 122878.
- 2 P. C. Shen, J. C. Lofaro Jr., W. R. Woerner, M. G. White, D. Su and Al. Orlov, *Chem. Eng. J.*, 2013, **223**, 200-208.
- 3 J. Hirayama, Ry. Abe and Y. Kamiya, *Appl. Catal. B Environ.*, 2014, **144**, 721-729.
- 4 M. Guo and G. J. Ma, *J. Catal.*, 2020, **391**, 241-246.